http://www.lydsy.com/JudgeOnline/problem.php?id=1096
第一次自己完成的斜率dp。
首先考虑暴力dp怎么做,设suan(i,j)表示将i~j的货物移动到j的费用。
sp[i]表示前i个厂房共有多少货物。
sw[i]表示将1~i的货物移动到i的费用。
我们有:
sw[i]=sw[i-]+sp[i-]*(x[i]-x[i-]);
sw显然是类前缀和的东西,所以我们可以得到suan(i,j)的式子:
sw[j]-sw[i]-sp[i-]*(x[j]-x[i])
(后面减去的部分分别是前i的货物从其原位置移动到i的费用和前i的货物从i移动到j的费用)
那么我们有:
f[i]=min(f[i],f[j]+suan(j+,i)+c[i]);
显然O(n^2),考虑斜率优化。
首先要让suan函数和i无关,将和i有关的变量提出来得:
inline ll suan(int j){
return sp[j-]*x[j]-sw[j];
}
f[i]=min(f[i],f[j]+sw[i]+suan(j+)+c[i]-sp[j]*x[i]);
当k<j<i时,如果f[k]+suan(k+1)-sp[k]*x[i]>f[j]+suan(j+1)-sp[j]*x[i]则把k踢出。
化成:(f[j]-f[k]-suan(k+1)+suan(j+1))/(sp[j]-sp[k])<x[i],显然可以斜率优化了。
至于剩下的套路部分就请看土地购买这道题的解法吧。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const ll INF=1e18;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+ch-'',ch=getchar();
return X*w;
}
int n,l,r;
ll f[N],q[N];
ll x[N],p[N],c[N],sw[N],sp[N];
inline ll suan(int j){
return sp[j-]*x[j]-sw[j];
}
inline double dp(int j,int k){
return 1.0*(f[j]-f[k]-suan(k+)+suan(j+))/(sp[j]-sp[k]);
}
int main(){
n=read();
for(int i=;i<=n;i++){
x[i]=read(),p[i]=read(),c[i]=read();
sp[i]=sp[i-]+p[i];
sw[i]=sw[i-]+sp[i-]*(x[i]-x[i-]);
}
for(int i=;i<=n;i++){
while(l<r&&dp(q[l],q[l+])<(double)x[i])l++;
f[i]=f[q[l]]+sw[i]+suan(q[l]+)+c[i]-sp[q[l]]*x[i];
while(l<r&&dp(q[r],i)<dp(q[r-],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++