搭建简单的神经网络:进行回归分析

import torch
import torch.nn.functional as F # 包含激励函数
import matplotlib.pyplot as plt # 建立数据集
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
# [1,2,3,4,5,6,7,8,9]---一维数据 [[1,2,3,4,5,6,7,8,9]]---二维数据
# torch只会处理二维及以上数据 # torch can only train on Variable, so convert them to Variable
# The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
# x, y = Variable(x), Variable(y) # 散点图
# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show() # 建立神经网络
# 先定义所有的层属性(__init__()), 然后再一层层搭建(forward(x))层于层的关系链接
class Net(torch.nn.Module): # 继承 torch 的 Module
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__() # 继承 __init__ 功能
# 定义每层用什么样的形式
self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer # 隐藏层线性输出
self.predict = torch.nn.Linear(n_hidden, n_output) # output layer # 输出层线性输出 ==== 定义层数 def forward(self, x): # 这同时也是 Module 中的 forward 功能
# 正向传播输入值, 神经网络分析出输出值
x = F.relu(self.hidden(x)) # activation function for hidden layer # 激励函数(隐藏层的线性值)
x = self.predict(x) # linear output # 输出值
return x # ==== 定义每层关系 net = Net(n_feature=1, n_hidden=10, n_output=1) # define the network
# print(net) # net architecture == 显示神经网络结构
# Net(
# (hidden): Linear(in_features=1, out_features=10, bias=True)
# (predict): Linear(in_features=10, out_features=1, bias=True)
# )
# 搭建完神经网络后,对 神经网路参数(net.parameters()) 进行优化
# (1.选择优化器 optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.15) # 传入 net 的所有参数, 学习率
# (2.选择优化的目标函数
loss_func = torch.nn.MSELoss() # this is for regression mean squared loss # 预测值和真实值的误差计算公式 (均方差) plt.ion() # something about plotting
# (3.开始训练网络
for t in range(200):
prediction = net(x) # input x and predict based on x # 喂给 net 训练数据 x, 输出预测值
loss = loss_func(prediction, y) # must be (1. nn output, 2. target) # 计算两者的误差 optimizer.zero_grad() # clear gradients for next train # 清空上一步的残余更新参数值
loss.backward() # backpropagation, compute gradients # 误差反向传播, 计算参数更新值
optimizer.step() # apply gradients # 将参数更新值施加到 net 的 parameters 上 if t % 5 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1) plt.ioff()
plt.show()
05-11 22:39