mongodb常用命令mongodb由C++写就,其名字来自humongous这个单词的中间部分,从名字可见其野心所在就是海量数据的处理。关于它的一个最简洁描述为:scalable, high-performance, open source, schema-free, document-oriented database。MongoDB的主要目标是在键/值存储方式(提供了高性能和高度伸缩性)以及传统的RDBMS系统(丰富的功能)架起一座桥梁,集两者的优势于一身。 安装及使用:首先在Ubuntu上安装MongoDB。下载MongoDB, 现在最新的生产版本1.7.01. 解压文件.$ tar -xvf mongodb-linux-i686-1.4.3.tgz2. 为MongoDB创建数据目录,默认情况下它将数据存储在/data/db$ sudo mkdir -p /data/db/$ sudo chown `id -u` /data/db3. 启动MongoDB服务.$ cd mongodb-linux-i686-1.4.3/bin$ ./mongod4. 打开另一个终端,并确保你在MongoDB的bin目录,输入如下命令.$ ./mongo一些概念 一个mongod服务可以有建立多个数据库,每个数据库可以有多张表,这里的表名叫collection,每个collection可以存放多个文档(document),每个文档都以BSON(binary json)的形式存放于硬盘中,因此可以存储比较复杂的数据类型。它是以单文档为单位存储的,你可以任意给一个或一批文档新增或删除字段,而不会对其它文档造成影响,这就是所谓的schema-free,这也是文档型数据库最主要的优点。跟一般的key-value数据库不一样的是,它的value中存储了结构信息,所以你又可以像关系型数据库那样对某些域进行读写、统计等操作。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。Mongo还可以解决海量数据的查询效率,根据官方文档,当数据量达到50GB以上数据时,Mongo数据库访问速度是MySQL10 倍以上。BSONBSON是Binary JSON 的简称,是一个JSON文档对象的二进制编码格式。BSON同JSON一样支持往其它文档对象和数组中再插入文档对象和数组,同时扩展了JSON的数据类型。如:BSON有Date类型和BinDate类型。BSON被比作二进制的交换格式,如同Protocol Buffers,但BSON比它更“schema-less”,非常好的灵活性但空间占用稍微大一点。BSON有以下三个特点:1. 轻量级2. 跨平台3. 效率高命名空间MongoDB存储BSON对象到collections,这一系列的数据库名和collection名被称为一个命名空间。如同:java.util.List;用来管理数据库中的数据。索引 mongodb可以对某个字段建立索引,可以建立组合索引、唯一索引,也可以删除索引,建立索引就意味着增加空间开销。默认情况下每个表都会有一个唯一索引:_id,如果插入数据时没有指定_id,服务会自动生成一个_id,为了充分利用已有索引,减少空间开销,最好是自己指定一个unique的key为_id,通常用对象的ID比较合适,比如商品的ID。shell操作数据库: 1. 超级用户相关: 1. #进入数据库adminuse admin 2. #增加或修改用户密码 db.addUser('name','pwd') 3. #查看用户列表 db.system.users.find() 4. #用户认证 db.auth('name','pwd') 5. #删除用户 db.removeUser('name') 6. #查看所有用户 show users 7. #查看所有数据库 show dbs 8. #查看所有的collection show collections 9. #查看各collection的状态 db.printCollectionStats() 10. #查看主从复制状态 db.printReplicationInfo() 11. #修复数据库 db.repairDatabase() 12. #设置记录profiling,0=off 1=slow 2=all db.setProfilingLevel(1) 13. #查看profiling show profile 14. #拷贝数据库 db.copyDatabase('mail_addr','mail_addr_tmp') 15. #删除collection db.mail_addr.drop() 16. #删除当前的数据库 db.dropDatabase() 2. 增删改 1. #存储嵌套的对象db.foo.save({'name':'ysz','address':{'city':'beijing','post':100096},'phone':[138,139]}) 2. #存储数组对象db.user_addr.save({'Uid':'[email protected]','Al':['[email protected]','[email protected]']}) 3. #根据query条件修改,如果不存在则插入,允许修改多条记录 db.foo.update({'yy':5},{'$set':{'xx':2}},upsert=true,multi=true) 4. #删除yy=5的记录 db.foo.remove({'yy':5}) 5. #删除所有的记录 db.foo.remove() 3. 索引 1. #增加索引:1(ascending),-1(descending) 2. db.foo.ensureIndex({firstname: 1, lastname: 1}, {unique: true}); 3. #索引子对象 4. db.user_addr.ensureIndex({'Al.Em': 1}) 5. #查看索引信息 6. db.foo.getIndexes() 7. db.foo.getIndexKeys() 8. #根据索引名删除索引 9. db.user_addr.dropIndex('Al.Em_1') 4. 查询 1. #查找所有 2. db.foo.find() 3. #查找一条记录 4. db.foo.findOne() 5. #根据条件检索10条记录 6. db.foo.find({'msg':'Hello 1'}).limit(10) 7. #sort排序 8. db.deliver_status.find({'From':'[email protected]'}).sort({'Dt',-1}) 9. db.deliver_status.find().sort({'Ct':-1}).limit(1) 10. #count操作 11. db.user_addr.count() 12. #distinct操作,查询指定列,去重复 13. db.foo.distinct('msg') 14. #”>=”操作 15. db.foo.find({"timestamp": {"$gte" : 2}}) 16. #子对象的查找 17. db.foo.find({'address.city':'beijing'}) 5. 管理 1. #查看collection数据的大小 2. db.deliver_status.dataSize() 3. #查看colleciont状态 4. db.deliver_status.stats() 5. #查询所有索引的大小 6. db.deliver_status.totalIndexSize()5. advanced queries:高级查询条件操作符 $gt : > $lt : $gte: >= $lte: $ne : !=、 $in : in $nin: not in $all: all $not: 反匹配(1.3.3及以上版本)查询 name "bruce" and age >= 18 的数据 db.users.find({name: {$ne: "bruce"}, age: {$gte: 18}});查询 creation_date > '2010-01-01' and creation_date db.users.find({creation_date:{$gt:new Date(2010,0,1), $lte:new Date(2010,11,31)});查询 age in (20,22,24,26) 的数据 db.users.find({age: {$in: [20,22,24,26]}});查询 age取模10等于0 的数据 db.users.find('this.age % 10 == 0'); 或者 db.users.find({age : {$mod : [10, 0]}});匹配所有 db.users.find({favorite_number : {$all : [6, 8]}}); 可以查询出{name: 'David', age: 26, favorite_number: [ 6, 8, 9 ] } 可以不查询出{name: 'David', age: 26, favorite_number: [ 6, 7, 9 ] }查询不匹配name=B*带头的记录 db.users.find({name: {$not: /^B.*/}}); 查询 age取模10不等于0 的数据 db.users.find({age : {$not: {$mod : [10, 0]}}});#返回部分字段 选择返回age和_id字段(_id字段总是会被返回) db.users.find({}, {age:1}); db.users.find({}, {age:3}); db.users.find({}, {age:true}); db.users.find({ name : "bruce" }, {age:1}); 0为false, 非0为true选择返回age、address和_id字段 db.users.find({ name : "bruce" }, {age:1, address:1});排除返回age、address和_id字段 db.users.find({}, {age:0, address:false}); db.users.find({ name : "bruce" }, {age:0, address:false});数组元素个数判断 对于{name: 'David', age: 26, favorite_number: [ 6, 7, 9 ] }记录 匹配db.users.find({favorite_number: {$size: 3}}); 不匹配db.users.find({favorite_number: {$size: 2}});$exists判断字段是否存在 查询所有存在name字段的记录 db.users.find({name: {$exists: true}}); 查询所有不存在phone字段的记录 db.users.find({phone: {$exists: false}});$type判断字段类型 查询所有name字段是字符类型的 db.users.find({name: {$type: 2}}); 查询所有age字段是整型的 db.users.find({age: {$type: 16}});对于字符字段,可以使用正则表达式 查询以字母b或者B带头的所有记录 db.users.find({name: /^b.*/i});$elemMatch(1.3.1及以上版本) 为数组的字段中匹配其中某个元素Javascript查询和$where查询 查询 age > 18 的记录,以下查询都一样 db.users.find({age: {$gt: 18}}); db.users.find({$where: "this.age > 18"}); db.users.find("this.age > 18"); f = function() {return this.age > 18} db.users.find(f);排序sort() 以年龄升序asc db.users.find().sort({age: 1}); 以年龄降序desc db.users.find().sort({age: -1});限制返回记录数量limit() 返回5条记录 db.users.find().limit(5); 返回3条记录并打印信息 db.users.find().limit(3).forEach(function(user) {print('my age is ' + user.age)}); 结果 my age is 18 my age is 19 my age is 20限制返回记录的开始点skip() 从第3条记录开始,返回5条记录(limit 3, 5) db.users.find().skip(3).limit(5);查询记录条数count() db.users.find().count(); db.users.find({age:18}).count(); 以下返回的不是5,而是user表中所有的记录数量 db.users.find().skip(10).limit(5).count(); 如果要返回限制之后的记录数量,要使用count(true)或者count(非0) db.users.find().skip(10).limit(5).count(true);分组group() 假设test表只有以下一条数据 { domain: "www.mongodb.org" , invoked_at: {d:"2009-11-03", t:"17:14:05"} , response_time: 0.05 , http_action: "GET /display/DOCS/Aggregation" } 使用group统计test表11月份的数据count:count(*)、total_time:sum(response_time)、avg_time:total_time/count; db.test.group( { cond: {"invoked_at.d": {$gt: "2009-11", $lt: "2009-12"}} , key: {http_action: true} , initial: {count: 0, total_time:0} , reduce: function(doc, out){ out.count++; out.total_time+=doc.response_time } , finalize: function(out){ out.avg_time = out.total_time / out.count } } );[ { "http_action" : "GET /display/DOCS/Aggregation", "count" : 1, "total_time" : 0.05, "avg_time" : 0.05 } ]Java 应用示例要使用Java操作MongoDB的话,要到官方网站下载一个驱动包,把包导入后,可以尝试来操作了(记得一定要开着服务器)首先介绍一下比较常用的几个类Mongo:连接服务器,执行一些数据库操作的选项,如新建立一个数据库等DB:对应一个数据库,可以用来建立集合等操作DBCollection:对应一个集合(类似表),可能是我们用得最多的,可以添加删除记录等DBObjec:接口和BasicDBObject对象:表示一个具体的记录,BasicDBObject实现了DBObject,因为是key-value的数据结构,所以用起来其实和HashMap是基本一致的DBCursor:用来遍历取得的数据,实现了Iterable和Iterator接下来实际的操作一下,代码如下:import java.net.UnknownHostException;import java.util.List;import java.util.Set;import com.mongodb.BasicDBObject;import com.mongodb.DB;import com.mongodb.DBCollection;import com.mongodb.DBCursor;import com.mongodb.DBObject;import com.mongodb.Mongo;import com.mongodb.MongoException;public class MongoDbTest { public static void main(String[] args) throws UnknownHostException, MongoException { //Mongo m = new Mongo();//Mongo m = new Mongo("localhost");//获得数据库服务Mongo m = new Mongo("localhost", 27017);//得到数据库mytestDB db = m.getDB("mytest");//得到mytest数据库下所有表名 Set colls = db.getCollectionNames(); for (String s : colls) { System.out.println(s);}//得到testCollection表DBCollection coll = db.getCollection("testCollection");//new 一个BasicDBObject对象docBasicDBObject doc = new BasicDBObject();//赋值 doc.put("name", "MongoDB"); doc.put("type", "database");doc.put("count", 1);//又new 一个BasicDBObject对象info BasicDBObject info = new BasicDBObject(); info.put("x", 203);info.put("y", 102);//把info放入docdoc.put("info", info);//向testCollection表中插入一条数据coll.insert(doc);//查询一条数据 DBObject myDoc = coll.findOne(); System.out.println(myDoc); //循环插入100条数据到testCollection for (int i=0; i coll.insert(new BasicDBObject().append("i", i)); } //Counting Documents in A Collection System.out.println(coll.getCount()); //Using a Cursor to Get All the Documents DBCursor cur = coll.find(); while(cur.hasNext()) { 10-28 21:42