个人心得:我在分治上看到的,但是感觉跟分治没关系,一眼想到斐波那契数可以找到此时n的字符串,但是无法精确到字母,题解的思路
真是令人佩服,以BA为基准,然后只要此时的长度大于7那么必然可以减去最大的斐波那契数然后转换为基准,此时直接输出就好了。服气服气
题目:
We will construct an infinitely long string from two short strings: A = "^__^" (four characters), and B = "T.T" (three characters). Repeat the following steps:
- Concatenate A after B to obtain a new string C. For example, if A = "^__^" and B = "T.T", then C = BA = "T.T^__^".
- Let A = B, B = C -- as the example above A = "T.T", B = "T.T^__^".
Your task is to find out the n-th character of this infinite string.
Input
The input contains multiple test cases, each contains only one integer N (1 <= N <= 2^63 - 1). Proceed to the end of file.
Output
For each test case, print one character on each line, which is the N-th (index begins with 1) character of this infinite string.
Sample Input
1
2
4
8
Sample Output
T
.
^
T
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iomanip>
#include<algorithm>
using namespace std;
#define maxi 0x7FFFFFFFFFFFFFFFLL
long long x[];
string base="T.T^__^";
void init(){
x[]=;
x[]=;
for(int i=;i<;i++)
{
x[i]=x[i-]+x[i-];
}
}
int main()
{
long long n;
init();
while(cin>>n){
while(n>){
int i=;
while(i<&&x[i]<n)
i++;
n-=x[i-];
}
cout<<base[n-]<<endl;
}
return ;
}