亚像素级的角点检测

目标

在本教程中我们将涉及以下内容:

  • 使用OpenCV函数 cornerSubPix 寻找更精确的角点位置 (不是整数类型的位置,而是更精确的浮点类型位置).

理论

代码

这个教程的代码如下所示。源代码还可以从 这个链接下载得到

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h> using namespace cv;
using namespace std; /// Global variables
Mat src, src_gray; int maxCorners = 10;
int maxTrackbar = 25; RNG rng(12345);
char* source_window = "Image"; /// Function header
void goodFeaturesToTrack_Demo( int, void* ); /** @function main */
int main( int argc, char** argv )
{
/// Load source image and convert it to gray
src = imread( argv[1], 1 );
cvtColor( src, src_gray, CV_BGR2GRAY ); /// Create Window
namedWindow( source_window, CV_WINDOW_AUTOSIZE ); /// Create Trackbar to set the number of corners
createTrackbar( "Max corners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo); imshow( source_window, src ); goodFeaturesToTrack_Demo( 0, 0 ); waitKey(0);
return(0);
} /**
* @function goodFeaturesToTrack_Demo.cpp
* @brief Apply Shi-Tomasi corner detector
*/
void goodFeaturesToTrack_Demo( int, void* )
{
if( maxCorners < 1 ) { maxCorners = 1; } /// Parameters for Shi-Tomasi algorithm
vector<Point2f> corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04; /// Copy the source image
Mat copy;
copy = src.clone(); /// Apply corner detection
goodFeaturesToTrack( src_gray,
corners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k ); /// Draw corners detected
cout<<"** Number of corners detected: "<<corners.size()<<endl;
int r = 4;
for( int i = 0; i < corners.size(); i++ )
{ circle( copy, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0,255),
rng.uniform(0,255)), -1, 8, 0 ); } /// Show what you got
namedWindow( source_window, CV_WINDOW_AUTOSIZE );
imshow( source_window, copy ); /// Set the neeed parameters to find the refined corners
Size winSize = Size( 5, 5 );
Size zeroZone = Size( -1, -1 );
TermCriteria criteria = TermCriteria( CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 40, 0.001 ); /// Calculate the refined corner locations
cornerSubPix( src_gray, corners, winSize, zeroZone, criteria ); /// Write them down
for( int i = 0; i < corners.size(); i++ )
{ cout<<" -- Refined Corner ["<<i<<"] ("<<corners[i].x<<","<<corners[i].y<<")"<<endl; }
}

解释

结果

OpenCV亚像素级的角点检测-LMLPHP

亚像素级的角点检测结果:

OpenCV亚像素级的角点检测-LMLPHP

翻译者

Shuai Zheng, <[email protected]>, http://www.cbsr.ia.ac.cn/users/szheng/

from: http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/features2d/trackingmotion/corner_subpixeles/corner_subpixeles.html#corner-subpixeles

05-11 22:24