题意:
给定一张n*m的图,图上每个点标有1~p的值,你初始在(1,1)点,你必须按照V:1,2,3...p的顺序走图上的点,问你如何走时间最少。
思路:
我一开始想的思路感觉很巧妙,但是TLE了。就是把不同值的点放在不同的vector中,然后类似dp的从2更新最小距离到p。因为我这是暴力枚举点的,复杂度不对。后来发现这个思路还需要优化一下,就是把同一行的点放在一起,for一遍这一行属于V的点,就可以更新本行的信息了,再向下把列中属于v+1的更新了。复杂度就降到了O(n^3);
%和学习的是这份代码:huhuhu
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
using namespace std;
///#pragma GCC optimize(3)
///#pragma comment(linker, "/STACK:102400000,102400000") //c++ #define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; ///priority_queue<int> q;//这是一个大根堆q
///priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
///#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
///priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFFLL; //
const ll nmos = 0x80000000LL; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3fLL; //
const int mod = 1e9+; const double PI=acos(-1.0); // #define _DEBUG; //*//
#ifdef _DEBUG
freopen("input", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
/*-----------------------showtime----------------------*/ const int maxn = ;
int dp[maxn][maxn], mp[maxn][maxn];
vector<pii>v[maxn*maxn];
vector<int>col[maxn];
bool vis[maxn];
int main(){
int n,m,tp;
scanf("%d%d%d", &n, &m, &tp);
for(int i=; i<=n; i++){
for(int j=; j<=m; j++){
int op; scanf("%d", &op);
mp[i][j] = op;
if(op==)dp[i][j] = i+j-;
else dp[i][j] = inf;
v[op].pb(pii(i,j));
}
} for(int i=; i<tp; i++){
for(int j=; j<= max(n,m); j++){
col[j].clear();
vis[j] = false;
} for(pii p : v[i+]){
col[p.se].pb(p.fi);
}
for(pii p: v[i]){
vis[p.fi] = true;
} for(int j=; j<=n; j++) if(vis[j]){
int best = inf;
for(int k = ; k<=m; k++){
best++;
if(mp[j][k] == i)
best = min(best, dp[j][k]);
for(int y : col[k]){
dp[y][k] = min(dp[y][k], best + abs(y-j));
}
} best = inf;
for(int k = m; k>=; k--){
best++;
if(mp[j][k] == i)
best = min(best, dp[j][k]);
for(int y : col[k]){
dp[y][k] = min(dp[y][k], best + abs(y-j));
}
}
}
} for(int i=; i<=n; i++){
for(int j=; j<=m; j++){
if(mp[i][j]==tp){
printf("%d\n", dp[i][j]);
}
}
}
return ;
}
CF-677D