若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程:
frac{dx(t)}{dt} = -y(t)-z(t)
frac{dy(t)}{dt} = x(t)+a*y(t)
frac{dz(t)}{dt} = b-c*z(t)+x(t)*z(t)
若斯叻方程没有解析解,但可利用龙格-库塔法求数值解并做图。
相关软件:混沌数学及其软件模拟
相关代码:
class RosslerAttractor : public DifferentialEquation
{
public:
RosslerAttractor()
{
m_StartX = 1.0f;
m_StartY = 2.0f;
m_StartZ = 3.0f; m_ParamA = 0.15f;
m_ParamB = 0.2f;
m_ParamC = 10.0f; m_StepT = 0.01f;
} void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ)
{
dX = -y - z;
dY = x + m_ParamA*y;
dZ = m_ParamB - m_ParamC*z + x*z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;}
bool IsValidParamC() const {return true;}
};
相关截图: