【bzoj2438】[中山市选2011]杀人游戏
Description
一位冷血的杀手潜入 Na-wiat,并假装成平民。警察希望能在 N 个人里面,
查出谁是杀手。
警察能够对每一个人进行查证,假如查证的对象是平民,他会告诉警察,他
认识的人, 谁是杀手, 谁是平民。 假如查证的对象是杀手, 杀手将会把警察干掉。
现在警察掌握了每一个人认识谁。
每一个人都有可能是杀手,可看作他们是杀手的概率是相同的。
问:根据最优的情况,保证警察自身安全并知道谁是杀手的概率最大是多
少?
Input
第一行有两个整数 N,M。
接下来有 M 行,每行两个整数 x,y,表示 x 认识 y(y 不一定认识 x,例如同志) 。
Output
仅包含一行一个实数,保留小数点后面 6 位,表示最大概率。
Sample Input
5 4
1 2
1 3
1 4
1 5
1 2
1 3
1 4
1 5
Sample Output
0.800000
HINT
警察只需要查证 1。假如1是杀手,警察就会被杀。假如 1不是杀手,他会告诉警
察 2,3,4,5 谁是杀手。而 1 是杀手的概率是 0.2,所以能知道谁是杀手但没被杀的概
率是0.8。
对于 100%的数据有 1≤N ≤ 10 0000,0≤M ≤ 30 0000
题解
在一个强联通中,可以一步一步推出每个人,所以只需要知道一个人就可以了,然后就是入度为0的点有关了。
ans=入度为0的连通块个数
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1e5+,maxm=3e5+; int pre[maxn],low[maxn],scc[maxn],clock,cnt;
int head[maxn],f[maxm],e[maxm],nxt[maxm],k;
int adde(int u,int v){
e[++k]=v,f[k]=u;
nxt[k]=head[u],head[u]=k;
}
int n,m,r[maxn],a[maxn],t;
int size[maxn],num[maxn]; int dfs(int u){
pre[u]=low[u]=++clock;
a[++t]=u;
for(int i=head[u];i;i=nxt[i]){
int v=e[i];
if(!pre[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}
else if(!scc[v]){
low[u]=min(low[u],pre[v]);
}
}
if(low[u]==pre[u]){
num[++cnt]=u;
while(t){
scc[a[t]]=cnt;
size[cnt]++;
if(a[t--]==u) break;
}
}
} int pd(int x){
int u=num[x];
for(int i=head[u];i;i=nxt[i])
if(r[scc[e[i]]]==) return ;
return ;
} int main(){
scanf("%d%d",&n,&m);
int u,v;
for(int i=;i<=m;i++){
scanf("%d%d",&u,&v);
adde(u,v);
} for(int i=;i<=n;i++)
if(!pre[i]) dfs(i); for(int i=;i<=k;i++)
if(scc[f[i]]!=scc[e[i]]) r[scc[e[i]]]++; int ans=;
for(int i=;i<=cnt;i++)
if(!r[i]) ans++; for(int i=;i<=cnt;i++)
if(size[i]==&&!r[i]&&pd(i)){
ans--;
break;
} printf("%.6lf",(double)(n-ans)/n);
return ;
}