图片视图
[b, 28, 28] # 保存b张图片,28行,28列(保存数据一般行优先),图片的数据没有被破坏
[b, 28*28] # 保存b张图片,不考虑图片的行和列,只保存图片的数据,不关注图片数据的细节
[b, 2, 14*28] # 保存b张图片,把图片分为上下两个部分,两个部分具体多少行是不清楚的
[b, 28, 28, 1] # 保存b张图片,28行,28列,1个通道
First Reshape(重塑视图)
import tensorflow as tf
a = tf.random.normal([4, 28, 28, 3])
a.shape, a.ndim
tf.reshape(a, [4, 784, 3]).shape # 给出一张图片某个通道的数据,丢失行、宽的信息
tf.reshape(a, [4, -1, 3]).shape # 4*(-1)*3 = 4*28*28*3
tf.reshape(a, [4, 784*3]).shape # 给出一张图片的所有数据,丢失行、宽和通道的信息
tf.reshape(a, [4, -1]).shape
Second Reshape(恢复视图)
tf.reshape(tf.reshape(a, [4, -1]), [4, 28, 28, 3]).shape
tf.reshape(tf.reshape(a, [4, -1]), [4, 14, 56, 3]).shape
tf.reshape(tf.reshape(a, [4, -1]), [4, 1, 784, 3]).shape
first reshape:
images: [4,28,28,3]
reshape to: [4,784,3]
second reshape:
[4,784,3] height:28,width:28 [4,28,28,3] √
[4,784,3] height:14,width:56 [4,14,56,3] ×
[4,784,3] width:28,height:28 [4,28,28,3] ×
Transpose(转置)
a = tf.random.normal((4, 3, 2, 1))
a.shape
tf.transpose(a).shape
tf.transpose(a, perm=[0, 1, 3, 2]).shape # 按照索引替换维度
a = tf.random.normal([4, 28, 28, 3]) # b,h,w,c
a.shape
tf.transpose(a, [0, 2, 1, 3]).shape # b,2,h,c
tf.transpose(a, [0, 3, 2, 1]).shape # b,c,w,h
tf.transpose(a, [0, 3, 1, 2]).shape # b,c,h,w
Expand_dims(增加维度)
a:[classes, students, classes]
add school dim(增加学校的维度):
[1, 4, 35, 8] + [1, 4, 35, 8] = [2, 4, 35, 8]
a = tf.random.normal([4, 25, 8])
a.shape
tf.expand_dims(a, axis=0).shape # 索引0前
tf.expand_dims(a, axis=3).shape # 索引3前
tf.expand_dims(a,axis=-1).shape # 索引-1后
tf.expand_dims(a,axis=-4).shape # 索引-4后,即左边空白处
Squeeze(挤压维度)
Only squeeze for shape = 1 dim(只删除维度为1的维度)
[4, 35, 8, 1] = [4, 35, 8]
[1, 4, 35, 8] = [14, 35, 8]
[1, 4, 35, 1] = [4, 35, 8]
tf.squeeze(tf.zeros([1,2,1,1,3])).shape
a = tf.zeros([1,2,1,3])
a.shape
tf.squeeze(a,axis=0).shape
tf.squeeze(a,axis=2).shape
tf.squeeze(a,axis=-2).shape
tf.squeeze(a,axis=-4).shape