[AHOI2012]树屋阶梯

Description

[AHOI2012]树屋阶梯 题解(卡特兰数)-LMLPHP

Solution

1.我们发现对于任何大小为i的树屋阶梯,都可以由左上角放一块大小为j的以及右下角放一块大小为(i−j−1)的树屋阶梯,再在空缺的地方由单个大块的矩形填充即可构成,那么这个构成的树屋阶梯一共有 j+(i−j−1)+1个钢材,正好是i个。

2.因为j可以在 0 到 i−1取且可以证明每一个构成的树屋阶梯一定各不相同,所以我们可以得到树屋阶梯方案与大小关系的递推式c[n]=Σ(0≤k<n)c[k]*c[n-k-1],边界条件为c[0]=c[1]=1;

3.我们发现这就是n对应的卡特兰数,输出n对应的卡特兰数就好,因为没有要求取模,考虑使用高精度;

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
int ans[100001]={},x=0;
void mul(int n){
for(int i=1;i<=ans[0];++i){
ans[i]=ans[i]*n+x;
x=ans[i]/10;
ans[i]%=10;
}
while(x>0){
ans[0]++;
ans[ans[0]]=x%10;
x/=10;
}
}
void div(int n){
int q=0;
for(int i=ans[0];i>=1;--i)
{
x=(ans[i]+q*10)%n;
ans[i]=(ans[i]+q*10)/n;
q=x;
}
while(ans[ans[0]]==0)ans[0]--;
}
int main(){
ans[0]=ans[1]=1;
int n;
scanf("%d",&n);
for(int i=n+2;i<=(n<<1);++i)mul(i);
for(int i=2;i<=n;++i) div(i);
for(int i=ans[0];i>0;--i)printf("%d",ans[i]);
printf("\n");
return 0;
}

卡特兰数基础知识部分可以参考我的题解:http://www.cnblogs.com/COLIN-LIGHTNING/p/8450053.html

05-11 20:44