[SCOI2010]字符串-LMLPHP

思路:

设1为向(1,1)方向走,0为向(1,-1)方向走。那么题意可转化为从(0,0)走到(n+m,n-m)且不能跨过y=0的方案数。总方案数C(n+m,n),然后要减去不合法的即线路通过y=-1的。将线路与y=-1交点的左边沿着y=-1做对称操作,则最后等价于从(0,-2)走到(n+m,n-m)的方案数。因为从(0,-2)

走到(n+m,n-m)需要向上走n-m+2次,一共要走n+m次。设向上向下各走x,y,那么x+y=n+m,x-y=n-m+2得到x=n+1,y=m-1,所以不合法的方案为C(n+m,m-1)。

[SCOI2010]字符串-LMLPHP

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int mod=;
const int N=;
int n,m,ans,f[][N][N];
void dp(){
// f[n+m][n][m]=1;
int now=;
f[now][n][m]=;
for(int i=n+m-;~i;i--){
now^=;
for(int j=;j<=n;j++){
for(int k=;k<=m;k++){
if(j>k&&k<m) f[now][j][k]+=f[now^][j][k+];
if(j<n) f[now][j][k]+=f[now^][j+][k];
if(f[now][j][k]>=mod) f[now][j][k]-=mod;
}
}
}
printf("%d\n",f[now][][]);
}
int main(){
freopen("string.in","r",stdin);
freopen("string.out","w",stdout);
cin>>n>>m;
if(n<m){puts("");return ;}
dp();
return ;
}

10分dp

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int mod=;
const int N=1e5+;
int n,m,ans,f[][N];
void dp(){
int now=;
f[][]=;
for(int i=;i<=n;i++){
now^=;
for(int j=;j<=min(i,m);j++){
if(i) f[now][j]+=f[now^][j];
if(j) f[now][j]+=f[now][j-];
if(f[now][j]>=mod) f[now][j]-=mod;
}
for(int j=;j<=min(i,m);j++) f[now^][j]=;
}
printf("%d\n",f[now][m]);
}
int main(){
freopen("string.in","r",stdin);
freopen("string.out","w",stdout);
cin>>n>>m;
if(n<m){puts("");return ;}
dp();
return ;
}

30分dp

//ans=C(n+m,n)-C(n+m,m-1){来源折线定理}
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
const int N=2e6+;
const ll mod=;
int n,m;ll ans,fz[N],fm[N];
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b){d=a;x=;y=;return ;}
exgcd(b,a%b,d,y,x);
y-=a/b*x;
}
ll inv(ll a,ll p){
ll d,x,y;
exgcd(a,p,d,x,y);
return d==?(x%p+p)%p:-;
}
int main(){
cin>>n>>m;
int S=n+m;fz[]=fm[]=;
for(ll i=;i<=S;i++) fz[i]=(fz[i-]*i)%mod;
fm[S]=inv(fz[S],mod);
for(ll i=S-;i;i--) fm[i]=(fm[i+]*(i+))%mod;
ans=(fz[n+m]*fm[n]%mod*fm[m]%mod-fz[n+m]*fm[m-]%mod*fm[n+]%mod+mod)%mod;
cout<<ans;
}
05-12 04:54