经过对Logistic回归理论的学习,推导出取对数后的似然函数为
现在我们的目的是求一个向量,使得最大。其中
对这个似然函数求偏导后得到
根据梯度上升算法有
进一步得到
我们可以初始化向量为0,或者随机值,然后进行迭代达到指定的精度为止。
def sigmoid(inX):
return 1.0/(1+exp(-inX))
def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn) #convert to NumPy matrix
labelMat = mat(classLabels).transpose() #convert to NumPy matrix
m,n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = ones((n,1))
for k in range(maxCycles): #heavy on matrix operations
h = sigmoid(dataMatrix*weights) #matrix mult
error = (labelMat - h) #vector subtraction
weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
return weights