2004: 追梦之人
描述
题目描述:
为了纪念追梦人,粉丝们创造了一种新的数——“追梦数”。追梦数要满足以下两个条件:
1、数字中不能出现“7”
2、不能被7整除。
比如:777和4396就不是追梦数,而666是追梦数。现在他们想知道,1到N中有多少个追梦数。
输入:
多组数据。
第一行给出一个正整数T。T为数据组数。
接下来T行,每行包括一个正整数N。
(1 \leq T \leq 10001≤T≤1000)
(1 \leq N \leq 10^{18}1≤N≤1018)
输出:
对于每组数据,在单独的一行中输出一个整数表示1到N中有多少个追梦数。
样例输入
4
10
14
17
100
样例输出
9
12
14
70
当初石乐志要维护三个东西,后来发觉数位只要维护两个东西就好了。
我们的答案是n-被7整除的数-不被7整除但包含7的数。
被7整除的数n/7即可求出。
后面这个写个数位dp即可。
dpi[k]表示长度为i,膜7的余数为j,是否含7的情况为k(k为0表示不含,为1表示含)的数的数量,考虑当前的第i位为x,之前的i-1位组成的数膜7的余数为y,那么dpi+=dpi-1。如果x不是7,那么k应该是0转移到0,1转移到1;如果x是7,那么都转移到k=1。剩下的就是裸的数位dp了。
注意边界。
#include<bits/stdc++.h>
#define clr(x) memset(x,0,sizeof(x))
#define clr_1(x) memset(x,-1,sizeof(x))
#define mod 7
#define LL long long
#define INF 0x3f3f3f3f
#define mp make_pair
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
const int N=1e5+;
LL all[][][],num[];
void init()
{
all[][][]=;
num[]=;
for(int i=;i<=;i++)
num[i]=(num[i-]*)%mod;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
for(int k=;k<;k++)
if(j!=)
{
all[i][(int)(j*num[i]%mod+k)%mod][]+=all[i-][k][];
all[i][(int)(j*num[i]%mod+k)%mod][]+=all[i-][k][];
}
else
all[i][(int)(j*num[i]%mod+k)%mod][]+=all[i-][k][]+all[i-][k][];
}
LL n,m,k;
LL ans;
int a[N],t,now;
bool flag;
int T;
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
ans=n-n/;
m=;
n++;
while(n)
{
a[++m]=n%;
n/=;
}
now=;
flag=;
for(int i=m;i>=;i--)
{
for(int j=;j<a[i];j++)
{
for(int k=;k<mod;k++)
if((j*num[i]%mod+k+now)%mod!=)
{
ans-=all[i-][k][];
if(flag || j==mod)
ans-=all[i-][k][];
}
}
now=(now+a[i]*num[i])%mod;
if(a[i]==mod)
flag=;
}
printf("%lld\n",ans);
}
}