版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/90478551
- 写在前面
本科毕业设计终于告一段落了。特写博客记录做毕业设计(路面裂纹识别)期间的踩过的坑和收获。希望对你有用。
目前有:
1.Tensorflow&CNN:裂纹分类
2.Tensorflow&CNN:验证集预测与模型评价
3.PyQt5多个GUI界面设计
本篇讲CNN的训练与预测(以裂纹分类为例)。任务目标:将裂纹图片数据集自动分类:纵向裂纹、横向裂纹、块状裂纹、龟裂裂纹、无裂纹共五类。
本篇主要参照博客tensorflow: 花卉分类。
- 环境配置安装
运行环境:Python3.6、Spyder
依赖模块:Skimage、Tensorflow(CPU)、Numpy 、Matlpotlib、Cv2等
- 开始工作
1.CNN架构
所使用的CNN架构如下:
一共有十三层。
2.训练
所使用的训练代码如下:
from skimage import io,transform
import glob
import os
import tensorflow as tf
import numpy as np
import time
import matplotlib.pyplot as plt
import pandas as pd
start_time = time.time()
tf.reset_default_graph() #清除过往tensorflow数据记录
#训练图片集地址
path='..//img5//'
#将所有的图片resize成100*100
w=100
h=100
c=3
#归一化
def normlization(img):
X=img.copy()
X1= np.mean(X, axis = 0) # 减去均值,使得以0为中心
X2=X-X1
X3= np.std(X2, axis = 0) # 归一化
X4=X2/X3
return X4
#读取图片
def read_img(path):
cate=[path+x for x in os.listdir(path)]
imgs=[]
labels=[]
for idx,folder in enumerate(cate):
for im in glob.glob(folder+'/*.jpg'):
#print('reading the images:%s'%(im))
img=io.imread(im)
img=transform.resize(img,(w,h))
#img=normlization(img)
imgs.append(img)
labels.append(idx)
return np.asarray(imgs,np.float32),np.asarray(labels,np.int32)
data,label=read_img(path)
#打乱顺序
num_example=data.shape[0]
arr=np.arange(num_example)
np.random.shuffle(arr)
data=data[arr]
label=label[arr]
#将所有数据分为训练集和验证集
ratio=0.8
s=np.int(num_example*ratio)
x_train=data[:s]
y_train=label[:s]
x_val=data[s:]
y_val=label[s:]
#-----------------构建网络----------------------
#占位符
x=tf.placeholder(tf.float32,shape=[None,w,h,c],name='x')
y_=tf.placeholder(tf.int32,shape=[None,],name='y_')
def inference(input_tensor, train, regularizer):
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.get_variable("weight",[5,5,3,32],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
with tf.name_scope("layer2-pool1"):
pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="VALID")
with tf.variable_scope("layer3-conv2"):
conv2_weights = tf.get_variable("weight",[5,5,32,64],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
with tf.name_scope("layer4-pool2"):
pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
with tf.variable_scope("layer5-conv3"):
conv3_weights = tf.get_variable("weight",[3,3,64,128],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME')
relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases))
with tf.name_scope("layer6-pool3"):
pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
with tf.variable_scope("layer7-conv4"):
conv4_weights = tf.get_variable("weight",[3,3,128,128],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding='SAME')
relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases))
with tf.name_scope("layer8-pool4"):
pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
nodes = 6*6*128
reshaped = tf.reshape(pool4,[-1,nodes])
with tf.variable_scope('layer9-fc1'):
fc1_weights = tf.get_variable("weight", [nodes, 1024],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1))
fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
if train: fc1 = tf.nn.dropout(fc1, 0.5)
with tf.variable_scope('layer10-fc2'):
fc2_weights = tf.get_variable("weight", [1024, 512],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1))
fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases)
if train: fc2 = tf.nn.dropout(fc2, 0.5)
with tf.variable_scope('layer11-fc3'):
fc3_weights = tf.get_variable("weight", [512, 5],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc3_weights))
fc3_biases = tf.get_variable("bias", [5], initializer=tf.constant_initializer(0.1))
logit = tf.matmul(fc2, fc3_weights) + fc3_biases
return logit
#训练参数
n_epoch=14
batch_size=32
batch_size2=32
learning_rate=0.001
#---------------------------网络结束---------------------------
regularizer = tf.contrib.layers.l2_regularizer(0.0001)
logits = inference(x,False,regularizer)
#(小处理)将logits乘以1赋值给logits_eval,定义name,方便在后续调用模型时通过tensor名字调用输出tensor
b = tf.constant(value=1,dtype=tf.float32)
logits_eval = tf.multiply(logits,b,name='logits_eval')
# 利用交叉熵定义损失
loss=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_)
mean_loss = tf.reduce_mean(loss) # 平均损失
train_op=tf.train.AdamOptimizer(learning_rate).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#定义一个函数,按批次取数据
def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
if shuffle:
excerpt = indices[start_idx:start_idx + batch_size]
else:
excerpt = slice(start_idx, start_idx + batch_size)
yield inputs[excerpt], targets[excerpt]
saver=tf.train.Saver()
sess=tf.Session()
sess.run(tf.global_variables_initializer())
traloss,traacc,valloss,valacc=[],[],[],[]
for epoch in range(n_epoch):
#training
train_loss, train_acc, n_batch = [],[], 0
for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):
_,err,ac=sess.run([train_op,mean_loss,acc], feed_dict={x: x_train_a, y_: y_train_a})
train_loss.append(err); train_acc.append(ac); n_batch += 1
tra_loss=round(np.sum(train_loss)/ n_batch,3)
tra_acc=round(np.sum(train_acc)/ n_batch,3)
traloss.append(tra_loss)
traacc.append(tra_acc)
print("epoch: %d train loss: %.3f train acc: %.3f"%(epoch,tra_loss,tra_acc))
#validation
validation_loss, validation_acc, n_batch = [], [], 0
for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size2, shuffle=False):
err, ac = sess.run([mean_loss,acc], feed_dict={x: x_val_a, y_: y_val_a})
validation_loss.append(err); validation_acc.append(ac); n_batch += 1
val_loss=round(np.sum(validation_loss)/ n_batch,3)
val_acc=round(np.sum(validation_acc)/ n_batch,3)
valloss.append(val_loss)
valacc.append(val_acc)
print("epoch: %d validation loss: %.3f validation acc: %.3f"%(epoch,val_loss,val_acc))
end_time = time.time()
print(" train loss: %f" %tra_loss)
print(" train acc: %f" %tra_acc)
print(" validation loss: %f" %val_loss)
print(" validation acc: %f" %val_acc)
print(" consume: %f s" %(end_time-start_time))
timeArray = time.localtime(end_time)
now=time.strftime("%Y_%m_%d", timeArray) #时间
saver.save(sess,".//model//model-" + str(epoch)+'-'+now)
sess.close()
3.训练记录存储
训练过程存储,主要是训练批次、训练集损失率、训练集准确率、验证集损失率、验证集准确率。
将其存入csv方法如下:
#字典中的key值即为csv中列名
dataframe = pd.DataFrame({'traloss':traloss,'traacc':traacc,'valloss':valloss,'valacc':valacc})
#将DataFrame存储为csv,index表示是否显示行名,default=True
dataframe.to_csv("test.csv",index=['traloss','traacc','valloss','valacc'],sep=',')
另外为了记录每次训练更详细信息,便于选择最合适的训练参数,需要将训练时的参数一并加以保存。使用txt方法保存:
#数据记录
with open('log.txt','a+')as file:
file.write('\n'+now+'\n')
file.write('n_epoch:'+str(n_epoch)+' '+
'batch_size:'+str(batch_size)+' '+
'batch_size2:'+str(batch_size2)+' '+
'learning_rate:'+str(learning_rate)+'\n')
for i in range(len(traloss)):
file.write(str(traloss[i])+','+
str(traacc[i])+','+
str(valloss[i])+','+
str(valacc[i])+'\n')
4.绘制训练集和验证集的损失准确率曲线
def map_loss_acc(_type,loss,acc):
plt.figure()
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
lns1 = ax1.plot(np.arange(n_epoch), loss, label="Loss")
lns2 = ax2.plot(np.arange(n_epoch), acc, 'r', label="Accuracy")
ax1.set_xlabel('epoch')
ax1.set_ylabel(_type+'loss')
ax2.set_ylabel(_type+'accuracy')
# 合并图例
lns = lns1 + lns2
labels = ["Loss", "Accuracy"]
plt.legend(lns, labels, loc=7)
直接调用即可。
map_loss_acc('training',traloss,traacc)
map_loss_acc('validation',valloss,valacc)
- 结果展示
可以看出验证集的准确率达到了92.1%,对于在数据集不足、计算力有限的情况下还是挺不错的。