import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt torch.manual_seed() # fake data
x = torch.unsqueeze(torch.linspace(-,,),dim=)
y = x.pow() + 0.2 * torch.rand(x.size())
x, y = Variable(x,requires_grad=False), Variable(y,requires_grad=False) def save():
net1 = torch.nn.Sequential(
torch.nn.Linear(, ),
torch.nn.ReLU(),
torch.nn.Linear(, )
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss() for t in range():
prediction = net1(x)
loss = loss_func(prediction, y)
optimizer.zero_grad()
loss.backward()
optimizer.step() plt.figure(,figsize=(,))
plt.subplot()
plt.title('Net1')
plt.scatter(x.data.numpy(),y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(),'r-',lw=)
torch.save(net1, 'net.pkl') # 保存整个网络,包括整个计算图
torch.save(net1.state_dict(), 'net_params.pkl') # 只保存网络中的参数 (速度快, 占内存少) def restore_net():
net2 = torch.load('net.pkl')
prediction = net2(x)
plt.subplot()
plt.title('Net2')
plt.scatter(x.data.numpy(),y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(),'r-',lw=)
def restore_params():
net3 = torch.nn.Sequential(
torch.nn.Linear(, ),
torch.nn.ReLU(),
torch.nn.Linear(, )
)
net3.load_state_dict(torch.load('net_params.pkl'))
prediction = net3(x) plt.subplot()
plt.title('Net3')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=)
# 将保存的参数复制到 net3
plt.show() save()
restore_net()
restore_params()
结果和莫烦的不一样,但是找不到问题的所在,,。。。