00 前言

在上一篇推文中,教大家利用了ALNS的lib库求解了一个TSP问题作为实例。不知道你萌把代码跑起来了没有。那么,今天咱们再接再厉。跑完代码以后,小编再给大家深入讲解具体的代码内容。大家快去搬个小板凳一起过来围观学习吧~

01 总体概述

前排高能预警,在下面的讲解中,会涉及很多C++语言的知识,特别是类与派生这一块的内容,如果C++基础比较薄弱的同学则需要回去(洗洗睡)再好好补一补啦,在这里小编就不再过多科普基础知识了。默认大家都是C++大佬,能一口说出虚函数表是什么的内种……

描述整一个ALNS算法逻辑过程的是一个叫ALNS的C++类。下面对其成员变量和成员函数讲解一下。

1.1 成员变量

//!   当前解。
ISolution* currentSolution; //! 判断接受准则。
IAcceptanceModule* acceptanceCriterion; //! ALNS算法运行的相关参数。
ALNS_Parameters* param; //! destroy和repair方法的管理者。
AOperatorManager* opManager; //! 最优解的管理者。
IBestSolutionManager* bestSolManager; //! 局部搜索的管理者。
ILocalSearchManager* lsManager; //! 自上次重新计算重新的权重以来的迭代次数。
size_t nbIterationsWC; //! 当前迭代次数。
size_t nbIterations; //! The current number of iterations without improvement.
size_t nbIterationsWithoutImprovement; //! The number of iterations without improvement of the current solution.
size_t nbIterationsWithoutImprovementCurrent; //! The number of iterations without acceptation of a transition.
size_t nbIterationsWithoutTransition; //! The number of iterations since the last call to a local search
//! operator.
size_t nbIterationsWithoutLocalSearch; //! 求解的总时间。
clock_t startingTime; //! 最优解的下界。
double lowerBound; //! A set containing the hash keys of the encountred solutions.
std::set<long long> knownKeys; //! 用于计算求解过程的一些状态量。
Statistics stats; //! 最近一次迭代的状态。
ALNS_Iteration_Status status; //! 每次迭代完成后需要更新的对象。
std::vector<IUpdatable*> updatableStructures; //! ALNS实例的名字。
std::string name;

上面的成员变量类型用的都是抽象类的指针,因为在实际写代码的过程中,coder们肯定还要对solution、localsearch等类进行继承和派生,接口重写等。用抽象类的指针好处就是在于当它指向子类对象时也能正确调用。再说明一点,上面的ISolution啊IAcceptanceModule等都是一些抽象类的类型,以后会进行介绍和讲解的,在这里大家知道它代表什么就行了。

1.2 成员函数

//! Constructor.
//! \param name the name of the instance.
//! \param initialSolution the starting solution that is going to be optimized.
//! \param acceptanceCrit the module that determine whether or not a new solution
//! is accepted as the current solution.
//! \param parameters the set of parameters to be use by the ALNS.
//! \param opMan an operator manager.
ALNS(std::string instanceName,
ISolution& initialSolution,
IAcceptanceModule& acceptanceCrit,
ALNS_Parameters& parameters,
AOperatorManager& opMan,
IBestSolutionManager& solMan,
ILocalSearchManager& lsMan); //! Destructor.
virtual ~ALNS(); //! This method launch the solving process.
//! \return true if a feasible solution is found,
//! false otherwise.
bool solve(); //! This method seeks if a solution is already known,
//! if not it is added to the set of known solutions.
//! \param sol the solution to be checked.
//! \return true if the solution was unknown, false otherwise.
bool checkAgainstKnownSolution(ISolution& sol); //! This method perform one iteration of the ALNS solving
//! process.
void performOneIteration(); //! This method check whether or not the stopping criteria is met.
bool isStoppingCriterionMet(); //! Determine whether or not the new solution is better than the
//! best known solution.
bool isNewBest(ISolution* newSol); //! \return the number of known solutions.
size_t getNumberKnownSolutions(){return knownKeys.size();}; //! Determine whether or not the new solution should be accepted
//! as the current solution.
bool transitionCurrentSolution(ISolution* newSol); //! Return a pointer to the best known solution.
IBestSolutionManager* getBestSolutionManager(){return bestSolManager;}; //! Add an object to the list of object to be updated at the end of each
//! iteration of the ALNS.
//! \param up the updatable object to be added.
void addUpdatable(IUpdatable& up){updatableStructures.push_back(&up);}; //! Destroy the manager that have been provided at the construction of
//! the instance.
void end();

ALNS类的成员函数以及参数说明、函数说明等都在注释里面了。这么简单的英文相信大家都能看懂,小编就不作翻译了。

02 具体实现

在看完ALNS类的总体概述以后,我们现在来研究一下各个成员函数的具体实现代码和过程。

2.1 ALNS::构造和析构函数

构造函数主要做的是一些初始化工作,用传进来的参数对成员变量进行初始化,或者直接初始化相关的成员变量等。而析构函数主要做的是清理工作,释放动态申请的堆内存。

//构造
ALNS::ALNS(string instanceName,
ISolution& initialSolution,
IAcceptanceModule& acceptanceCrit,
ALNS_Parameters& parameters,
AOperatorManager& opMan,
IBestSolutionManager& bestSolMan,
ILocalSearchManager& lsMan)
{
name = instanceName;
currentSolution = initialSolution.getCopy();
acceptanceCriterion = &acceptanceCrit;
param = &parameters;
lowerBound = -DBL_MAX;
nbIterationsWC = 0;
nbIterations = 0;
nbIterationsWithoutImprovement = 0;
opManager = &opMan;
bestSolManager = &bestSolMan;
lsManager = &lsMan; opManager->setStatistics(&stats); // We add the initial solution in the best solution manager.
bestSolManager->isNewBestSolution(initialSolution); nbIterationsWithoutImprovementCurrent = 0; nbIterationsWithoutTransition = 0; nbIterationsWithoutLocalSearch = 0;
}
//析构
ALNS::~ALNS()
{
delete currentSolution;
}

2.2 ALNS::performOneIteration()

该方法执行一次迭代操作。也是整个流程比较核心的部分。大概过程是先进行destroy操作和进行repair操作,然后判断新解质量。而后看情况要不要使用LocalSearch进行搜索,再用判断接受准则看是否要接受新解。最后更新destroy操作和repair操作的成绩。再做一些状态量的处理等。具体注释我已经标注在代码里了,理解起来不难。

void ALNS::performOneIteration()
{
//重新初始化一些状态量。
status.partialReinit();
//选择Repair和Destroy方法
ARepairOperator& repair = opManager->selectRepairOperator();
ADestroyOperator& destroy = opManager->selectDestroyOperator(); ISolution* newSolution = currentSolution->getCopy();
//输出迭代次数等信息。 param->getLogFrequency()获取的是logFrequency变量的值,logFrequency变量表示的意思是每隔多少次输出一下相关信息。
if(nbIterations % param->getLogFrequency() == 0)
{
cout << "[ALNS] it. " << nbIterations << " best sol: " << (*(bestSolManager->begin()))->getObjectiveValue() << " nb known solutions: " << knownKeys.size() << endl;
}
//destroy操作
destroy.destroySolution(*newSolution);
//更新状态
status.setAlreadyDestroyed(ALNS_Iteration_Status::TRUE);
status.setAlreadyRepaired(ALNS_Iteration_Status::FALSE);//未进行repair操作
//表示newSolution还是status的信息对解进行更新。这里只提供接口,后面应用的时候要具体重写。
for(vector<IUpdatable*>::iterator it = updatableStructures.begin(); it != updatableStructures.end(); it++)
{
(*it)->update(*newSolution,status);
}
//进行repair操作
repair.repairSolution(*newSolution);
status.setAlreadyRepaired(ALNS_Iteration_Status::TRUE);
//更新迭代次数
nbIterations++;
status.setIterationId(nbIterations);
nbIterationsWC++; double newCost = newSolution->getObjectiveValue();
//判断新生产的解是不是新的最优解
isNewBest(newSolution);
//判断新生成的解之前有没有出现过
checkAgainstKnownSolution(*newSolution);
//判断新生成的解和当前解谁更优
bool betterThanCurrent = (*newSolution)<(*currentSolution);
//如果新生成的解更优
if(betterThanCurrent)
{
nbIterationsWithoutImprovementCurrent = 0;//清0
status.setImproveCurrentSolution(ALNS_Iteration_Status::TRUE);
}
//否则
else
{
nbIterationsWithoutImprovementCurrent++;
status.setImproveCurrentSolution(ALNS_Iteration_Status::FALSE);//解没有得到提高
}
//更新状态
status.setNbIterationWithoutImprovementCurrent(nbIterationsWithoutImprovementCurrent);
//param->getPerformLocalSearch()指出要不要用LocalSearch,然后再用LocalSearch对新生成的解进行搜索。lsManager->useLocalSearch(*newSolution,status)将返回true如果经过LocalSearch之后的解有改进的话。
if(param->getPerformLocalSearch() && lsManager->useLocalSearch(*newSolution,status))
{
//判断LocalSearch之后的新解是不是最优解。
bestSolManager->isNewBestSolution(*newSolution);
}
//判断是否接受当前的解。
bool transitionAccepted = transitionCurrentSolution(newSolution);
//如果接受
if(transitionAccepted)
{
status.setAcceptedAsCurrentSolution(ALNS_Iteration_Status::TRUE);
nbIterationsWithoutTransition = 0;
}
//否则
else
{
status.setAcceptedAsCurrentSolution(ALNS_Iteration_Status::FALSE);
nbIterationsWithoutTransition++;
}
//更新信息
status.setNbIterationWithoutTransition(nbIterationsWithoutTransition);
//再一次进行LocalSearch操作,以取得更好的效果。
if(param->getPerformLocalSearch() && lsManager->useLocalSearch(*newSolution,status))
{
bestSolManager->isNewBestSolution(*newSolution);
if(status.getAcceptedAsCurrentSolution() == ALNS_Iteration_Status::TRUE)
{
transitionCurrentSolution(newSolution);
}
}
//对destroy,repair方法进行成绩更新。
opManager->updateScores(destroy,repair,status); //记录本次迭代过程的一些信息。
stats.addEntry(static_cast<double>(clock()-startingTime)/CLOCKS_PER_SEC,nbIterations,destroy.getName(),repair.getName(),newCost,currentSolution->getObjectiveValue(),(*(bestSolManager->begin()))->getObjectiveValue(),knownKeys.size()); //更新destroy,repair方法的权重。是在进行了一定迭代次数以后才更新的,具体次数由param->getTimeSegmentsIt()获得。
if(nbIterationsWC % param->getTimeSegmentsIt() == 0)
{
opManager->recomputeWeights();
nbIterationsWC = 0;
}
//接口,对解的某些部分再次更新。
for(vector<IUpdatable*>::iterator it = updatableStructures.begin(); it != updatableStructures.end(); it++)
{
(*it)->update(*newSolution,status);
}
//如果有需要,将当前解转变成最优解再进行下一次迭代操作。
currentSolution = bestSolManager->reloadBestSolution(currentSolution,status); delete newSolution;
}

2.3 ALNS::checkAgainstKnownSolution(ISolution& sol)

检查该解是否是之前出现过的解。主要原理是利用一个解的哈希表,所有第一次出现的解都会生成一个唯一的哈希值存于哈希表中。将传入解的哈希值在哈希表中进行匹配,如果存在,那么这个解之前已经出现过了,否则就是独一无二的新解。

bool ALNS::checkAgainstKnownSolution(ISolution& sol)
{
bool notKnownSolution = false;
long long keySol = sol.getHash();
//哈希值匹配
if(knownKeys.find(keySol) == knownKeys.end())
{
notKnownSolution = true;
knownKeys.insert(keySol);
}
//之前已经出现过的解。
if(!notKnownSolution)
{
status.setAlreadyKnownSolution(ALNS_Iteration_Status::TRUE);
}
//全新的解,之前没有出现过。
else
{
status.setAlreadyKnownSolution(ALNS_Iteration_Status::FALSE);
}
return notKnownSolution;
}

2.4 ALNS::isNewBest(ISolution* newSol)

用来判断解是否为新的最优解,并做出相应的设置。

bool ALNS::isNewBest(ISolution* newSol)
{
//如果是新的最优解
if(bestSolManager->isNewBestSolution(*newSol))
{
status.setNewBestSolution(ALNS_Iteration_Status::TRUE);
nbIterationsWithoutImprovement = 0;
status.setNbIterationWithoutImprovement(nbIterationsWithoutImprovement);
status.setNbIterationWithoutImprovementSinceLastReload(0);
return true;
}
//如果不是。
else
{
status.setNewBestSolution(ALNS_Iteration_Status::FALSE);
nbIterationsWithoutImprovement++;
status.setNbIterationWithoutImprovement(nbIterationsWithoutImprovement);
status.setNbIterationWithoutImprovementSinceLastReload(status.getNbIterationWithoutImprovementSinceLastReload()+1);
return false;
}
}

2.5 ALNS::transitionCurrentSolution(ISolution* newSol)

利用判断准则判断是否要接受当前的解作为新的解。

bool ALNS::transitionCurrentSolution(ISolution* newSol)
{
//如果接受。
if(acceptanceCriterion->transitionAccepted(*bestSolManager,*currentSolution,*newSol,status))
{
delete currentSolution;
currentSolution = newSol->getCopy();
return true;
}
//不接受,原来解不变,什么也不做。
else
{
return false;
}
}

2.6 ALNS::isStoppingCriterionMet()

判断算法迭代是否遇到终止条件。各种条件说明已经注释在代码:

bool ALNS::isStoppingCriterionMet()
{
//是否找到最优可行解。
if((*(bestSolManager->begin()))->isFeasible() && (*(bestSolManager->begin()))->getObjectiveValue() == lowerBound)
{
return true;
}
else
{
switch(param->getStopCrit())
{
//是否达到最大迭代次数。
case ALNS_Parameters::MAX_IT: {
return nbIterations >= param->getMaxNbIterations();
}
//是否达到最大限制运行时间。
case ALNS_Parameters::MAX_RT: {
clock_t currentTime = clock();
double elapsed = (static_cast<double>(currentTime - startingTime)) / CLOCKS_PER_SEC;
return elapsed >= param->getMaxRunningTime();
}
//the maximum number of iterations without improvement.
case ALNS_Parameters::MAX_IT_NO_IMP: {
return nbIterationsWithoutImprovement >= param->getMaxNbIterationsNoImp();
}
//a mix of the MAX_IT, MAX_RT and MAX_IT_NO_IMP.
case ALNS_Parameters::ALL: {
if(nbIterations >= param->getMaxNbIterations())
{
return true;
}
if(nbIterationsWithoutImprovement >= param->getMaxNbIterationsNoImp())
{
return true;
}
clock_t currentTime = clock();
double elapsed = (static_cast<double>(currentTime - startingTime)) / CLOCKS_PER_SEC;
if(elapsed >= param->getMaxRunningTime())
{
return true;
}
return false;
} default: {
assert(false);
return false;
}
}
} }

2.7 ALNS::solve()

开始ALNS算法的迭代过程。这是将上面的模块组装起来,然后跑算法求解的过程了。

bool ALNS::solve()
{
startingTime = clock();
param->setLock();
acceptanceCriterion->startSignal();
opManager->startSignal();
stats.setStart();
//如果没有遇到终止条件,那么将一次次迭代下去。
while(!isStoppingCriterionMet())
{
performOneIteration();
}
//获取运行结果,返回解是否可行。
string pathGlob = param->getStatsGlobPath();
pathGlob += name;
pathGlob += ".txt";
string pathOp = param->getStatsOpPath();
pathOp += name;
pathOp += ".txt";
stats.generateStatsFile(pathGlob,pathOp);
return (*(bestSolManager->begin()))->isFeasible();
}

03 小结

至此,ALNS主逻辑的代码已经讲完了,大家还是以整体为重点,整体把握为主。

细枝末节我们后期还会讲的。并且……后面还有一大波代码有得大家酸爽。

不过还是先把碗里的吃完吧~咱们下期代码再见!

05-11 19:32