题目链接:
题目描述:
给出n个六边形排成一排,a[i]代表i个六边形能组成的生成树个数,设定s[i]等于a[1]+a[2]+a[3]+....+a[i-1]+a[i],问s[n]为多少?
解题思路:
n取值范围[1, 10],打表内存不够,然后就要考虑快速幂咯!纳尼!!!!快速幂写出来竟然超时,敢信?果然还是见题太少了。(GG)
对于a[n] = 6*a[n-1] - a[n-2],可以很明显看出。
然后求和的时候就要化简一番了,但是并不是很难,最终的公式是:s[n] = 6*s[n-1] - s[n-2] + 5;然后构造矩阵,预处理构造矩阵,跑快速幂即可!!
代码:
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
using namespace std; #define LL long long
const LL maxn = ;
const LL mod = ;
struct mat
{
LL col, row;
LL p[maxn][maxn];
} pp[]; mat mul (mat a, mat b);
mat pow (LL n, LL res, mat b); int main ()
{
LL n, t;
mat b;
scanf ("%lld", &t);
memset (pp[].p, , sizeof(pp[].p));
memset (b.p, , sizeof(b.p));
pp[].col = pp[].row = b.row = maxn;
b.col = ;
pp[].p[][] = ;
pp[].p[][] = -;
pp[].p[][] = pp[].p[][] = pp[].p[][] = ;
b.p[][] = ;
b.p[][] = ;
b.p[][] = ;
for (int i=; i<; i++)
pp[i] = mul(pp[i-], pp[i-]); while (t --)
{
mat a;
scanf ("%lld", &n);
a = pow(n-, , b);
printf ("%lld\n", a.p[][] % mod);
} return ;
} mat mul (mat a, mat b)
{
mat c;
c.col = a.col;
c.row = b.row;
memset (c.p, , sizeof(c.p));
for (int k=; k<a.row; k++)
for (int i=; i<a.col; i++)
{
if (a.p[i][k] == ) continue;
for (int j=; j<b.row; j++)
{
if (b.p[k][j] == ) continue;
c.p[i][j] = (c.p[i][j] + a.p[i][k] * b.p[k][j] + mod) % mod;
}
}
return c;
} mat pow (LL n, LL res, mat b)
{
while (n)
{
if (n % )
b = mul (b, pp[res]);
res ++;
n /= ;
}
return b;
}
写的好丑!不要喷我 (捂脸逃~~~~)