Wannafly挑战赛18 E 极差
题意
给出三个长度为n的正整数序列,一个区间[L,R]的价值定义为:三个序列中,这个区间的极差(最大值与最小值之差)的乘积。
求所有区间的价值之和。答案对\(2^{32}\)取模。
题解
如果只有一个区间,我们可以枚举区间右端点,当右端点向右移动,左端点在[x, r]的一些区间的值会发生改变,可以用单调栈和线段树维护。
至于三个区间,可以用八棵线段树维护选中的某几个区间想乘的值。
代码
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define rep(i, a, b) for(int i=(a); i<(b); i++)
#define sz(a) (int)a.size()
#define efi(a) a[sz(a)-1]
#define ese(a) a[sz(a)-2]
#define de(a) cout << #a << " = " << a << endl
#define dd(a) cout << #a << " = " << a << " "
#define all(a) a.begin(), a.end()
#define endl "\n"
typedef long long ll;
typedef unsigned int uint;
typedef pair<int, int> pii;
typedef vector<int> vi;
//---
const int N = 101010;
const ll P = 1ll<<32;
int n;
uint a[3][N];
struct Seg {
#define ls (rt<<1)
#define rs (ls|1)
static const int N = ::N<<2;
uint sum[8][N], la[3][N];
void build(int l, int r, int rt) {
sum[0][rt] = r-l+1;
if(l==r) return ;
int mid = l+r>>1;
build(l, mid, ls);
build(mid+1, r, rs);
}
inline void gao(int x, uint c, int rt) {
int p = 1<<x;
rep(i, 1, 8) if((i&p)==p) {
sum[i][rt] += sum[i^p][rt] * c;
}
la[x][rt] += c;
}
inline void down(int rt) {
rep(x, 0, 3) if(la[x][rt]) {
gao(x, la[x][rt], ls);
gao(x, la[x][rt], rs);
la[x][rt] = 0;
}
}
inline void up(int rt) {
rep(i, 1, 8) sum[i][rt] = sum[i][ls] + sum[i][rs];
}
void upd(int L, int R, int p, uint c, int l, int r, int rt) {
if(L<=l&&r<=R) {
gao(p, c, rt);
return ;
}
int mid = l+r>>1;
down(rt);
if(L<=mid) upd(L, R, p, c, l, mid, ls);
if(R>=mid+1) upd(L, R, p, c, mid+1, r, rs);
up(rt);
}
uint qry(int L, int R, int l, int r, int rt) {
if(L<=l&&r<=R) return sum[7][rt];
int mid = l+r>>1;
down(rt);
uint ans = 0;
if(L<=mid) ans += qry(L, R, l, mid, ls);
if(R>=mid+1) ans += qry(L, R, mid+1, r, rs);
up(rt);
return ans;
}
}seg;
int pma[3], pmi[3];
int ma[3][N], mi[3][N];
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
///
cin >> n;
///read
rep(i, 0, 3) rep(j, 1, n+1) cin >> a[i][j];
///solve
seg.build(1, n, 1);
uint ans = 0;
rep(j, 1, n+1) {
rep(i, 0, 3) {
while(pmi[i] && a[i][mi[i][pmi[i]]] > a[i][j]) {
seg.upd(mi[i][pmi[i]-1]+1, mi[i][pmi[i]], i, a[i][mi[i][pmi[i]]], 1, n, 1);
--pmi[i];
}
mi[i][++pmi[i]] = j;
seg.upd(mi[i][pmi[i]-1]+1, j, i, -a[i][j], 1, n, 1);
while(pma[i] && a[i][ma[i][pma[i]]] < a[i][j]) {
seg.upd(ma[i][pma[i]-1]+1, ma[i][pma[i]], i, -a[i][ma[i][pma[i]]], 1, n, 1);
--pma[i];
}
ma[i][++pma[i]] = j;
seg.upd(ma[i][pma[i]-1]+1, j, i, a[i][j], 1, n, 1);
}
ans += seg.sum[7][1];
}
cout << ans << endl;
return 0;
}