Description

1946 年 3 月 5 日,英国前首相温斯顿·丘吉尔在美国富尔顿发表“铁幕演说”,正式拉开了冷战序幕。

美国和苏联同为世界上的“超级大国”,为了争夺世界霸权,两国及其盟国展开了数十年的斗争。在这段时期,虽然分歧和冲突严重,但双方都尽力避免世界范围的大规模战争(第三次世界大战)爆发,其对抗通常通过局部代理战争、科技和军备竞赛、太空竞争、外交竞争等“冷”方式进行,即“相互遏制,不动武力”,因此称之为“冷战”。

Reddington 是美国的海军上将。由于战争局势十分紧张,因此他需要时刻关注着苏联的各个活动,避免使自己的国家陷入困境。苏联在全球拥有 N 个军工厂,但由于规划不当,一开始这些军工厂之间是不存在铁路的,为了使武器制造更快,苏联决定修建若干条道路使得某些军工厂联通。Reddington 得到了苏联的修建日程表,并且他需要时刻关注着某两个军工厂是否联通,以及最早在修建哪条道路时会联通。具体而言,现在总共有M 个操作,操作分为两类:• 0 u v,这次操作苏联会修建一条连接 u 号军工厂及 v 号军工厂的铁路,注意铁路都是双向的;• 1 u v, Reddington 需要知道 u 号军工厂及 v 号军工厂最早在加入第几条条铁路后会联通,假如到这次操作都没有联通,则输出 0;作为美国最强科学家, Reddington 需要你帮忙设计一个程序,能满足他的要求。

Input

第一行两个整数 N, M。

接下来 M 行,每行为 0 u v 或 1 u v 的形式。

数据是经过加密的,对于每次加边或询问,真正的 u, v 都等于读入的u, v 异或上上一次询问的答案。一开始这个值为 0。

1 ≤ N, M ≤ 500000,解密后的 u, v 满足1 ≤ u, v ≤ N, u不等于v

Output

对于每次 1 操作,输出 u, v 最早在加入哪条边后会联通,若到这个操作时还没联通,则输出 0。

Sample Input

5 9

0 1 4

1 2 5

0 2 4

0 3 4

1 3 1

0 7 0

0 6 1

0 1 6

1 2 6

Sample Output

0

3

5


简洁题意

动态维护最小生成树

然后其实可以发现这道题的边权只会递增,所以带权并查集也可以做

但是我为了练练LCT就写一写

很显然的思路

判断两个点是不是在同一个联通块中,并进行合并

把边权拆成点权就好了


#include<bits/stdc++.h>
using namespace std;
#define IL inline
#define N 1000010
#define INF 0x3f3f3f3f
struct Splay{
Splay *fa,*ch[2];
bool rev;
int vl,maxv;
bool son(){return fa->ch[1]==this;}
bool isroot(){return fa->ch[0]!=this&&fa->ch[1]!=this;}
void up();
void down();
}p[N],_null,*null=&_null;
void Splay::up(){
maxv=vl;
if(ch[0]!=null)maxv=max(maxv,ch[0]->maxv);
if(ch[1]!=null)maxv=max(maxv,ch[1]->maxv);
}
void Splay::down(){
if(!isroot())fa->down();
if(rev){
if(ch[0]!=null)ch[0]->rev^=1;
if(ch[1]!=null)ch[1]->rev^=1;
swap(ch[0],ch[1]);
rev=0;
}
}
void init(Splay *id,int vl=0){
id->fa=id->ch[1]=id->ch[0]=null;
id->vl=vl;
}
void rotate(Splay *t){
Splay *f=t->fa,*g=f->fa;
bool a=t->son(),b=a^1;
if(!f->isroot())g->ch[f->son()]=t;
t->fa=f->fa;
f->ch[a]=t->ch[b],t->ch[b]->fa=f;
t->ch[b]=f,f->fa=t;
f->up(),t->up();
}
void splay(Splay *t){
t->down();
while(!t->isroot()){
Splay *f=t->fa;
if(!f->isroot()){
if(t->son()^f->son())rotate(t);
else rotate(f);
}
rotate(t);
}
}
void access(Splay *t){
Splay *tmp=null;
while(t!=null){
splay(t);
t->ch[1]=tmp;
t->up();
tmp=t;
t=t->fa;
}
}
void makeroot(Splay *t){
access(t);
splay(t);
t->rev^=1;
}
void link(Splay *x,Splay *y){
makeroot(x);
x->fa=y;
}
void split(Splay *x,Splay *y){
makeroot(x);
access(y);
splay(y);
}
void cut(Splay *x,Splay *y){
split(x,y);
x->fa=y->ch[0]=null;
y->up();
}
Splay *findroot(Splay *t){
while(t->fa!=null)t=t->fa;
return t;
}
int main(){
int n,m,lastans=0,cnt=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)init(p+i);
while(m--){
int op,x,y;scanf("%d%d%d",&op,&x,&y);
x^=lastans;
y^=lastans;
if(!op){
cnt++;
if(findroot(p+x)!=findroot(p+y)){
init(p+n+cnt,cnt);
link(p+x,p+n+cnt);
link(p+y,p+n+cnt);
}
}else{
if(findroot(p+x)!=findroot(p+y))lastans=0;
else split(p+x,p+y),lastans=p[y].maxv;
printf("%d\n",lastans);
}
}
return 0;
}
05-11 18:14