感觉好无聊。

秦九昭算法:一般地,一元n次多项式的求值需要经过(n+1)*n/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。(百度百科)

具体来说怎么做呢?

  $f(x) = \sum_{i = 0}^{n}a_{i}*x^{i} = (((a_{n}*x + a_{n - 1}) * x + a_{n - 2})...)*x + a_{0} $

这么来说,读入优化好像也有这种思想在里面。

那么本题中数太大了,使用高精会T,怎么办呢?

搞几个大质数取取模……

Luogu上用$1e9 + 7$能AC

时间复杂度$O(mn)$

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = ;
const ll P = 1e9 + ; int n, m, ans = , res[N];
ll a[N]; template <typename T>
inline void read(T &X) {
X = ;
char ch = ;
T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = ((X << ) + (X << ) + ch - ) % P;
X = (X * op + P) % P;
} inline bool chk(ll k) {
ll sum = 0LL;
for(int i = n; i >= ; i--)
sum = ((sum + a[i]) * k + P) % P;
sum = (sum + a[] + P) % P;
return sum == 0LL;
} int main() {
read(n), read(m);
for(int i = ; i <= n; i++) read(a[i]);
for(int i = ; i <= m; i++)
if(chk(i)) res[++ans] = i; printf("%d\n", ans);
if(ans != ) {
for(int i = ; i <= ans; i++)
printf("%d\n", res[i]);
}
return ;
}
05-11 18:13