题目大意:定义无向图生成树的最大边与最小边的差为苗条度,找出苗条度最小的生成树的苗条度。

题目分析:先将所有边按权值从小到大排序,在连续区间[L,R]中的边如果能构成一棵生成树,那么这棵树一定有最小的苗条度。枚举所有这样的区间。

代码如下:

# include<iostream>
# include<cstdio>
# include<set>
# include<queue>
# include<cstring>
# include<algorithm>
using namespace std;
# define REP(i,s,n) for(int i=s;i<n;++i)
# define CL(a,b) memset(a,b,sizeof(a))
# define CLL(a,b,n) fill(a,a+n,b) const int N=105;
const int INF=1<<30;
struct Edge
{
int u,v,w;
bool operator < (const Edge &a) const {
return w<a.w;
}
};
Edge e[5005];
int fa[N],n,m; int findFa(int u)
{
if(fa[u]!=u)
return fa[u]=findFa(fa[u]);
return u;
} bool judge()
{
int cnt=0;
REP(i,1,n+1) if(fa[i]==i) ++cnt;
return cnt==1;
} int main()
{
//freopen("UVALive-3887 Slim Span.txt","r",stdin);
while(scanf("%d%d",&n,&m)&&(n+m))
{
REP(i,0,m) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
sort(e,e+m);
int ans=INF;
REP(L,0,m){
REP(i,1,n+1) fa[i]=i;
REP(R,L,m){
int u=e[R].u,v=e[R].v;
int a=findFa(u);
int b=findFa(v);
if(a!=b)
fa[a]=b;
if(judge()){
ans=min(ans,e[R].w-e[L].w);
break;
}
}
}
if(ans==INF)
printf("-1\n");
else
printf("%d\n",ans);
}
return 0;
}

  

05-11 17:39