学了下单纯形法解线性规划
看起来好像并不是特别难,第二个code有注释。我还有...*=-....这个不是特别懂
第一个是正常的,第二个是解对偶问题的
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
const double eps=1e-; int n,m; double sum;
double a[][],b[],c[];
void pivot(int o,int e)
{
b[o]/=a[o][e];
for(int i=;i<=n;i++)
if(i!=e)a[o][i]/=a[o][e];
a[o][e]=/a[o][e]; for(int i=;i<=m;i++)
if(i!=o&&fabs(a[i][e])>eps)
{
b[i]-=b[o]*a[i][e];
for(int j=;j<=n;j++)
if(j!=e)a[i][j]-=a[o][j]*a[i][e];
a[i][e]*=-a[o][e];
} sum+=c[e]*b[o];
for(int i=;i<=n;i++)
if(i!=e)c[i]-=a[o][i]*c[e];
c[e]*=-a[o][e];
}
void simplex()
{
int e,o; double d;
while()
{
d=;
for(int i=;i<=n;i++)
if(c[i]>d)d=c[i],e=i;
if(d==)return ; d=(<<);
for(int i=;i<=m;i++)
if(a[i][e]>eps&&d>b[i]/a[i][e])
d=b[i]/a[i][e],o=i;
if(d==(<<)){sum=(<<);return ;} pivot(o,e);
}
}
int main()
{
int K;
scanf("%d%d",&n,&K);m=*n+;n*=;
for(int i=;i<=n;i++)scanf("%lf",&c[i]);
for(int i=;i<=m;i++)
{
b[i]=K;
for(int j=;j<=n/;j++)a[i][i+j-]++;
}
for(int i=;i<=n;i++)
b[m+i]=,a[m+i][i]++;
m+=n;
sum=;simplex();
printf("%.0lf\n",sum);
return ;
}
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
const double eps=1e-; int n,m; double sum;
double a[][],b[],c[];
//解的过程中,由于基变量xi=ci,所以c也代表放在当前约束的基变量取值 void pivot(int o,int e)//把作为第o个约束的基变量用e替换
{
c[o]/=a[o][e];//没有替换之前,e的取值被当前限制,是c[o]/a[i][e],先令x=c
for(int i=;i<=m;i++)//把e的系数消掉,其实常数项c也是同理的
if(i!=e)a[o][i]/=a[o][e];
a[o][e]=/a[o][e];//难点!取倒数相当于保留了自己的常数项,而除以了上一个的常数项,这样下面就可以直接消除上一个的影响了 for(int i=;i<=n;i++)
if(i!=o&&fabs(a[i][e])>eps)//对于其它的约束条件,把离基的变量用进基的变量替代
{
c[i]-=c[o]*a[i][e];
for(int j=;j<=m;j++)
if(j!=e)a[i][j]-=a[o][j]*a[i][e];
a[i][e]*=-a[o][e];
} sum+=b[e]*c[o];//系数乘以值
for(int i=;i<=m;i++)//对于第i个变量当前已经用了b[e]*a[o][i]来贡献答案了
if(i!=e)b[i]-=a[o][i]*b[e];
b[e]*=-a[o][e];
}
void simplex()
{
int e,o; double d;
while()
{
d=;//找进基的变量
for(int i=;i<=m;i++)//基变量的b一定<=0,在非基变量中找一个对答案贡献最大(系数最大)的进基
if(b[i]>d)d=b[i],e=i;
if(d==)return ; d=(<<);//找离基的变量,进基变量系数的非负比要最小
for(int i=;i<=n;i++)//找对e的最小约束(即用此新角点截距最小,也就是当前e的取值被这个约束条件约束)离基
if(a[i][e]>eps&&d>c[i]/a[i][e])
d=c[i]/a[i][e],o=i;
if(d==(<<)){sum=(<<);return ;} pivot(o,e);
}
} int main()
{
int l,r;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%lf",&c[i]);
memset(a,,sizeof(a));
for(int i=;i<=m;i++)
{
scanf("%d%d%lf",&l,&r,&b[i]);
for(int j=l;j<=r;j++)a[j][i]++;
}
simplex();
printf("%.0lf\n",sum); return ;
}
---恢复内容结束---