【BZOJ3508】开灯

题面

bzoj

题解

其实变为目标操作和从目标操作变回来没有区别,我们考虑从目标操作变回来。

区间整体翻转(\(\text{Xor}\;1\))有点难受,我们考虑将这个操作放在差分数组上,也就是说令\(a\)为原数组,\(c\)为差分数组,\(c_i=a_{i-1}\text{Xor}\;a_i\)。

那么我们就相当于让差分数组上的数全变为\(0\),而一次操作就相当于让一对\(1\)消掉或一对\(0,1\)位置互换。

而两个\(1\)在其他位置消掉和在某个\(1\)的位置消掉是没有区别的,多个\(1\)也一样,所以我们可以直接\(bfs\)预处理每对点消掉的贡献。

而差分数组最多\(2K\)个\(1\),状压每个点有没有被消掉即可。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std; inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (ch != '-' && (ch > '9' || ch < '0')) ch = getchar();
if (ch == '-') w = -1 , ch = getchar();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return w * data;
}
const int INF = 0x3f3f3f3f;
const int MAX_N = 40005, MAX_M = 105;
int N, K, M;
int b[MAX_M];
bool used[MAX_N], g[MAX_N];
int st[30], tp;
int cost[30][30], dep[MAX_N]; queue<int> que;
void bfs(int s, int *dis) {
memset(dep, 0, sizeof(dep));
dep[s] = 1;
que.push(s);
while (!que.empty()) {
int x = que.front(); que.pop();
for (int i = 1; i <= M; i++) {
if (x + b[i] <= N && !dep[x + b[i]]) dep[x + b[i]] = dep[x] + 1, que.push(x + b[i]);
if (x - b[i] >= 1 && !dep[x - b[i]]) dep[x - b[i]] = dep[x] + 1, que.push(x - b[i]);
}
}
for (int i = 0; i < tp; i++) dis[i] = dep[st[i]] - 1;
}
int f[1 << 20];
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
int Q = gi();
while (Q--) {
memset(used, 0, sizeof(used)); tp = 0;
N = gi() + 1, K = gi(), M = gi();
for (int i = 1; i <= K; i++) used[gi()] = 1;
for (int i = 1; i <= M; i++) b[i] = gi();
for (int i = 1; i <= N; i++) g[i] = used[i] ^ used[i - 1];
for (int i = 1; i <= N; i++) if (g[i]) st[tp++] = i;
for (int i = 0; i < tp; i++) bfs(st[i], cost[i]);
memset(f, 0x3f, sizeof(f));
f[0] = 0;
for (int S = 0; S < (1 << tp) - 1; S++) {
for (int i = 0; i < tp; i++) {
if (S >> i & 1) continue;
for (int x = i + 1; x < tp; x++) {
if ((S >> x & 1) == 0 && (cost[i][x] != -1)) {
int tmp = (S | (1 << i) | (1 << x));
f[tmp] = min(f[tmp], f[S] + cost[i][x]);
}
}
break;
}
}
printf("%d\n", f[(1 << tp) - 1] == INF ? -1 : f[(1 << tp) - 1]);
}
return 0;
}
05-11 17:13