传送门

由乃tql……

然后抄了一波zcy大佬的题解

我们考虑把询问给离线,用莫队做

然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$

然后再记录一个$now1$的反串$now2$(就是每一位代表的是$N-x$),干吗用等下说

1操作的话,因为每一个位置代表一个数字,如果存在$z-y=x$,可以转化为同时存在$z$和$z-x$,那么把$now1$左移$x$位并与$now1$做$\&$运算,看看是否等于$0$,如果不是说明不存在

2操作的话,$now2$中的$y'$代表数字$N-y$,然后求是否存在$z+y=x$,也就是求是否同时满足$now1$中有$z$和$now2$中有$y'$,带进前面的式子里,$N-y'+z=x,z-y'=x-N$,然后就转化成和上面一样了,那么只要把$now2$右移$N-x$位并与$now1$做$\&$运算就行了

3操作的话,我们可以考虑枚举约数(总共是$\sqrt {n}$个,时间足够),然后在$now1$里每一次查询即可

顺带一提,代码里bitset中的any返回是否有1

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<bitset>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
struct node{
int k,l,r,x,id;
}q[N+];
int m,n,l,r,s;
int a[N+],c[N+],ans[N+],rt[N+];
bitset<N+> now1,now2;
inline int operator <(node x,node y){
return rt[x.l]==rt[y.l]?rt[x.l]&?x.r<y.r:x.r>y.r:rt[x.l]<rt[y.l];
}
inline void init(){
n=read(),m=read(),s=sqrt(n);
for(int i=;i<=n;++i) a[i]=read(),rt[i]=(i-)/s+;
for(int i=;i<=m;++i){
q[i].k=read(),q[i].l=read(),q[i].r=read();
q[i].x=read(),q[i].id=i;
}
sort(q+,q++m);l=,r=;
}
inline void add(int x){if(c[x]++==)now1[x]=,now2[N-x]=;}
inline void del(int x){if(--c[x]==)now1[x]=,now2[N-x]=;}
int main(){
init();
for(int i=;i<=m;++i){
while(l<q[i].l) del(a[l++]);
while(l>q[i].l) add(a[--l]);
while(r>q[i].r) del(a[r--]);
while(r<q[i].r) add(a[++r]);
int k=q[i].k,x=q[i].x;
switch(k){
case :{
if((now1&(now1<<x)).any())
ans[q[i].id]=;
break;
}
case :{
if((now1&(now2>>(N-x))).any())
ans[q[i].id]=;
break;
}
case :{
for(int j=;j*j<=x;++j)
if(!(x%j))
if(now1[j]&&now1[x/j]){
ans[q[i].id]=;break;
}
break;
}
}
}
for(int i=;i<=m;++i)
puts(ans[i]?"hana":"bi");
return ;
}
05-11 17:01