B 君的第二题 (hongkong)
题目大意:
一个长度为\(n(n\le2\times10^5)\)的数组,给定一个数\(k(k\le40)\)。用\(a[i][j]\)表示该数组\(i\)次前缀和中第\(j\)项的值,要求支持以下两种操作:
- 输入\(x,y\),将\(a[0][x]\)加上\(y\);
- 输入\(x\),求\(a[k][x]\)的值。
思路:
题目询问的实际上就是\(\sum_{i=1}^x\binom{x-i+k-1}{k-1}a[0][i]\)。
我们可以得到
\[\begin{align*}
&\sum_{i=1}^x\binom{x-i+k-1}{k-1}a[0][i]\\
=&\sum_{i=1}^x\sum_{j=0}^{k-1}\binom xj\binom{k-i-1}{k-j-1}a[0][i]\\
=&\sum_{j=0}^{k-1}\binom xj\left(\sum_{i=1}^x\binom{k-i-1}{k-j-1}a[0][i]\right)
\end{align*}
\]
&\sum_{i=1}^x\binom{x-i+k-1}{k-1}a[0][i]\\
=&\sum_{i=1}^x\sum_{j=0}^{k-1}\binom xj\binom{k-i-1}{k-j-1}a[0][i]\\
=&\sum_{j=0}^{k-1}\binom xj\left(\sum_{i=1}^x\binom{k-i-1}{k-j-1}a[0][i]\right)
\end{align*}
\]
用树状数组维护即可。
时间复杂度\(\mathcal O(mk\log n)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
register bool neg=false;
while(!isdigit(ch=getchar())) neg|=ch=='-';
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return neg?-x:x;
}
using int64=long long;
constexpr int N=4e5+1,K=41,mod=1e9+7;
int n,m,k,fac[N],ifac[N];
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int &x) {
int ret,tmp;
exgcd(x,mod,ret,tmp);
return (ret%mod+mod)%mod;
}
inline int C(const int &n,const int &m) {
if(n<m) return 0;
return (int64)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
class FenwickTree {
private:
int val[K][N];
int lowbit(const int &x) const {
return x&-x;
}
int query(const int &p,const int &v) const {
int ret=0;
if(v==0) return val[k][p];
for(register int i=1;i<=k;i++) {
(ret+=(int64)val[i][p]*C(v+k-i-1,v-1)%mod)%=mod;
}
return ret;
}
public:
int query(const int &p) const {
int ret=0;
for(register int i=p;i;i-=lowbit(i)) {
(ret+=query(i,p-i))%=mod;
}
return ret;
}
void modify(const int &p,const int &x) {
for(register int i=1;i<=k;i++) {
for(register int j=p;j<=n;j+=lowbit(j)) {
(val[i][j]+=(int64)C(i+j-p-1,i-1)*x%mod)%=mod;
}
}
}
};
FenwickTree t;
int main() {
n=getint(),m=getint(),k=getint();
for(register int i=fac[0]=1;i<=n*2;i++) {
fac[i]=(int64)fac[i-1]*i%mod;
}
ifac[n*2]=inv(fac[n*2]);
for(register int i=n*2;i;i--) {
ifac[i-1]=(int64)ifac[i]*i%mod;
}
for(register int i=0;i<m;i++) {
const int opt=getint();
if(opt==0) {
const int x=getint(),y=getint();
t.modify(x,y);
}
if(opt==1) {
printf("%d\n",t.query(getint()));
}
}
return 0;
}