Stern-Brocot树
产生了所有分子分母互素的分数
从初始0/1 1/0 -> m/n m'/n'出发,不断往中间添加 (m+m')/(n+n')
容易推得 n * m' - m * n' = 1
证:
初始 0/1 1/0 那么1*1-0*0=1
那么假设前一次符合n * m' - m * n' = 1的性质
之后二叉树有两个方向行进,产生两种相邻 (m/n , (m+m')/(n+n')) ((m+m')/(n+n') , m'/n')
-> 左侧n*(m+m') - m*(n+n') = n*m'-m*n'=1
右侧(n+n')*m'-(m+m')*n' = n*m'-m*n = 1
所以总是不断的得到n * m' - m * n' = 1的性质
那么根据扩展欧几里得很容易得到 (n+n') , (m+m') 互质才有解,所以产生的数 (m+m')/(n+n') 必然是分子分母互素的
因为必然有整数解,很容易得知左右连接的两个数 n , n' 互质 , m m'互质 , n m 互质 , n' m'互质
同样因为(n+n')*m'-(m+m')*n' = 1
产生了所有分子分母互素的分数的证明:
m/n < (m+m')/(n+n') < m'/n' -> 这一点保证了Stern-Brocot树产生的分数是有序的
总是在两个合法分数之间产生一个合法分数,也就是说我们需要任何分数,只需要递归判断属于哪个区间,不断往树的那
一侧移动
而且每次往树底移动一步,必然会使分母变大至少1,所以求分母为n的合法分数,至多只需要往树上走n层即可
利用Stern-Brocot树思想 求解阶为n的法里级数
法里级数就是表示分母不大于n的所有分数
下面是简单的求出法里级数序列的代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
#define M 26
#define N 500000
#define ull unsigned long long
#define ll long long
const int MOD = ;
int n; void dfs(int l1 , int l2 , int r1 , int r2) //l1/l2 , r1/r2
{
if(l2+r2>n) return ;
//Stern-Brocot树 左侧总是最小的,右侧最大的,那么总是优先输入左侧,再输入中间的,最后输入右侧的数
dfs(l1 , l2 , l1+r1 , l2+r2);
cout<<l1+r1<<"/"<<l2+r2<<" ";
dfs(l1+r1 , l2+r2 , r1 , r2);
} int main() {
n = ;
cout<<"0/1 ";
dfs( , , , ); //会按从小到大的次序输出结果
cout<<"1/1"<<endl;
return ;
}
Farey series
Stern-Brocot树上节点的表示
我从单位一设为起始点
总是用一个长字符串表示从单位1 (1/1) 开始走的路径
L表示左走 , R表示右走,当前位置为S
那么用M(S) = (n n'
m m') 的矩阵进行描述
值F(S) = (m+m')/(n+n')
往右走M(SR) = M(S) * M(R) = M(S)*(1 1
0 1)
往左走M(SL) = M(S) * M(L) = M(S)*(1 0
1 1)
对于连续的都可以用矩阵快速幂求解
如M(SRRRR) = M(S)*M(R)^4
另外求F(RS) 时 可以发现规律是 F(RS) = F(S)+1, F(LS) = F(S)/(F(S)+1)
可以利用矩阵简单求证