题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695
题意:
给出n、m、k ,求出1<=x<=n, 1<=y<=m 且gcd(x,y) == k 的(x,y)的对数
解析:
显然就是求 [1,n/k] 与 [1, m/k]有多少数对的最大公约数是1
莫比乌斯入门题
我们设
为满足且和的的对数
为满足且和的的对数
那么,很显然,反演后得到
我们所需要的答案便是 f(1) = ∑µ(i)*(n/i)*(m/i) ,求解这个式子我们可以分块求和,复杂度为O(√n)。
最后注意由于题目要求,需要将重复的去掉。
代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring> using namespace std;
const int maxn=; int vis[maxn];
int prime[maxn];
int cnt;
int mu[maxn];
int sum[maxn]; void init()
{
memset(vis,,sizeof(vis));
cnt=;
mu[]=;
for(int i=;i<maxn;i++)
{
if(!vis[i])
{
prime[cnt++]=i;
mu[i]=-;
}
for(int j=;j<cnt&&i*prime[j]<maxn;j++)
{
vis[i*prime[j]]=;
if(i%prime[j])
mu[i*prime[j]]=-mu[i];
else
{
mu[i*prime[j]]=;
break;
}
}
}
sum[]=;
for(int i=;i<maxn;i++)
sum[i]=sum[i-]+mu[i];
} int main()
{
int a,b,c,d,k;
init();
int T,ca=;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",ca++);
if(k==)
{
printf("0\n");
continue;
}
b=b/k;
d=d/k;
if(b>d)
swap(b,d);
long long ans1=;
int last;
for(int i=;i<=b;i=last+)
{
last=min(b/(b/i),d/(d/i));
ans1+=(long long)(sum[last]-sum[i-])*(b/i)*(d/i);
}
long long ans2=;
for(int i=;i<=b;i=last+)
{
last=b/(b/i);
ans2+=(long long)(sum[last]-sum[i-])*(b/i)*(b/i);
}
long long ans=ans1-ans2/;
printf("%lld\n",ans);
}
return ;
}