题目描述
巨酱有 n 副耳机,他把它们摆成了一列,并且由 1 到n依次编号。每个耳机有一个玄学值,反映了各自的一些不可名状的独特性能。玄学值都是 0 到 m-1 间的整数。在外界的作用下(包括但不限于换线、上放、更换电源为核电、让kAc叔叔给它们讲故事),这些耳机的玄学值会发生改变。特别地,巨酱观察发现,每种作用 o 对应了两个整数 ao与 bo,在这种作用之后,玄学值原本为 x 的耳机,其玄学值恰会变成 (aox+bo)modm。
巨酱对他手头耳机的表现并不满意,遗憾的是,最近他并不有钱,无法任性,不能赶紧买买买以满足自己。手头紧张的他准备拟定一个相对经济的方案,通过各种作用来改善他手头玩具的性能。具体地说,为了尽快完成方案的制订,巨酱希望自己能高效地完成以下工作:
巨酱想到了一种操作,能让耳机的玄学值由 x 变为 (ax+b)modm,并且他计划对编号为 i 到 j 的耳机执行这种操作。
巨酱想知道如果将(并且仅将)自己的第 i 个到第 j 个计划按顺序付诸行动,编号为 k 的耳机的玄学值将会变成多少。
出于著名算法竞赛选手的矜持,巨酱表示自己才不需要你的帮助。但是如果巨酱真的厌倦了自己的玩具,它们就会被50包邮出给主席。为了不让后者白白捡到便宜,你考虑再三还是决定出手。
题解
二进制分组的思想。
用线段树维护时间的操作序列,每次操作一个一个往线段树里面插,等到一个线段被插满的时候用归并来维护区间的信息。查询的时候如果一个线段没有被插满就递归下去。定位到一个区间的时候在区间里面归并出来的信息二分。
代码
#include <cstdio> #define maxn 100010
#define maxm 600010
#define R register
int x[maxn], tnum;
struct Seg {
int l, r, a, b;
} p[maxn * ];
int lef[maxm << ], rig[maxm << ], pcnt, ta, tb, ql, qr, n, m, k, ans;
void update(R int o, R int l, R int r)
{
lef[o] = pcnt + ;
for (R int i = lef[o << ], j = lef[o << | ], head = ; i <= rig[o << ] || j <= rig[o << | ]; )
if (p[i].r <= p[j].r)
{
p[++pcnt] = (Seg) {head, p[i].r, 1ll * p[i].a * p[j].a % m, (1ll * p[j].a * p[i].b + p[j].b) % m};
head = p[i].r + ;
p[i].r == p[j].r ? ++j : ; ++i;
}
else
{
p[++pcnt] = (Seg) {head, p[j].r, 1ll * p[i].a * p[j].a % m, (1ll * p[j].a * p[i].b + p[j].b) % m};
head = p[j].r + ; ++j;
}
rig[o] = pcnt;
}
int find(R int o, R int t, R int &s)
{
R int l = lef[o], r = rig[o];
while (l < r)
{
R int mid = l + r >> ;
if (t <= p[mid].r) r = mid;
else l = mid + ;
}
// printf("%d %d t %d s %d %d %d\n", p[l].l, p[l].r, t, s, p[l].a, p[l].b);
s = (1ll * s * p[l].a + p[l].b) % m;
}
void modify(R int o, R int l, R int r, R int t)
{
if (l == r)
{
lef[o] = pcnt + ;
ql > ? p[++pcnt] = (Seg) {, ql - , , }, : ;
p[++pcnt] = (Seg) {ql, qr, ta, tb};
qr < n ? p[++pcnt] = (Seg) {qr + , n, , }, : ;
rig[o] = pcnt;
return ;
}
R int mid = l + r >> ;
if (t <= mid) modify(o << , l, mid, t);
else modify(o << | , mid + , r, t); if (t == r) update(o, l, r);
}
void query(R int o, R int l, R int r)
{
if (ql <= l && r <= qr)
{
find(o, k, ans);
return ;
}
R int mid = l + r >> ;
if (ql <= mid) query(o << , l, mid);
if (mid < qr) query(o << | , mid + , r);
}
int main()
{
R int type; scanf("%d%d%d", &type, &n, &m);
for (R int i = ; i <= n; ++i) scanf("%d", &x[i]);
R int Q; scanf("%d", &Q);
for (R int QQ = ; QQ <= Q; ++QQ)
{
R int opt, l, r; scanf("%d%d%d", &opt, &l, &r);
type & ? l ^= ans, r ^= ans : ;
if (opt == )
{
scanf("%d%d", &ta, &tb); ++tnum; ql = l; qr = r;
modify(, , Q, tnum);
}
else
{
scanf("%d", &k); type & ? k ^= ans : ; ql = l; qr = r;
ans = x[k];
query(, , Q);
printf("%d\n", ans);
}
}
return ;
}