链接:https://www.nowcoder.com/acm/contest/136/J
来源:牛客网
题目描述
洋灰是一种建筑材料,常用来筑桥搭建高层建筑,又称,水泥、混凝土。
WHZ有很多铸造成三角形的洋灰块,他想把这些洋灰三角按照一定的规律放到摆成一排的n个格子里,其中第i个格子放入的洋灰三角数量是前一个格子的k倍再多p个,特殊地,第一个格子里放1个。
WHZ想知道把这n个格子铺满需要多少洋灰三角。
WHZ想知道把这n个格子铺满需要多少洋灰三角。
输入描述:
第一行有3个正整数n,k,p。
输出描述:
输出一行,一个正整数,表示按照要求铺满n个格子需要多少洋灰三角,由于输出数据过大,你只需要输出答案模1000000007(1e9+7)后的结果即可。
输入例子:
3 1 1
输出例子:
6
-->
示例1
输入
3 1 1
输出
6
说明
洋灰三角铺法:1 2 3,总计6个
示例2
输入
3 2 2
输出
15
说明
洋灰三角铺法:1 4 10,总计15个
示例3
输入
3 3 3
输出
28
说明
洋灰三角铺法:1 6 21,总计28个
备注:
对于100%的测试数据:
1 ≤ n ≤ 1000000000
1 ≤ k,p ≤ 1000 分析:
k=1时:
f(n)为等差数列,S(n)=n*(n-1)/2*p+n
k!=1时:
f(n) = k*f(n-1)+p
S(n)=f(1)+f(2)+...+f(n)=1+k+k^2+...+k^(n-1)+k^(n-2)*p+2*k^(n-3)*p+...+(n-2)*k*p+(n-1)*p
=(k^n-1)/(k-1)+p*(k^n-1)/(k-1)^2-p*n/(k-1)=(1+p/(k-1))*(k^n-1)/(k-1)-p*n/(k-1)
S(n)求解过程:
第一部分S1=f(1)+f(2)+...+f(n)=1+k+k^2+...+k^(n-1)是个等比数列直接用等比数列求和公式求
后面一部分S2=k^(n-2)*p+2*k^(n-3)*p+...+(n-2)*k*p=p*(k^(n-2)+2*k^(n-3)+...+(n-2)*k)
考虑求g(n)=k^(n-2)+2*k^(n-3)+...+(n-2)*k
设f(n)=k^(n-1)+k^(n-2)+...+k^2
则f'(n)=(n-1)*k^(n-2)+(n-2)*k^(n-3)+...+2*k
所以:n*f(n)/k = n*k^(n-2)+n*k^(n-3)+...+n*k
所以:n*f(n)/k-f'(n)=k^(n-2)+2*k^(n-3)+...+(n-2)*k
即 g(n)=n*f(n)/k-f'(n)
f(n)的式子为等比数列可根据等比数列求和公式得出,f'(n)为f(n)的求导式
最后一部分:(n-1)*p
三部分相加就是S(n)的结果了
AC代码:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e6+10;
const ll mod = 1e9+7;
const double pi = acos(-1.0);
const double eps = 1e-8;
ll qow( ll a, ll b ) {
ll ans = 1;
while( b ) {
if( b&1 ) {
ans = ans*a%mod;
}
a = a*a%mod;
b /= 2;
}
return ans;
}
int main() {
ios::sync_with_stdio(0);
ll n, k, p;
while( cin >> n >> k >> p ) {
if( k == 1 ) {
cout << (n-1)*n/2*p+n << endl;
} else {
ll ans=(1+p*qow(k-1,mod-2)%mod)%mod*((qow(k,n)-1+mod)%mod)%mod*qow(k-1,mod-2)%mod;
ans=(ans-p*qow(k-1,mod-2)%mod*n%mod+mod)%mod;
cout << ans << endl;
}
}
return 0;
}