Link:
Solution:
和 BZOJ2395 的建模完全相同,(BZOJ2395 题解传送门)
仅仅是将其中的基础问题由最小生成树改成了二分图最大完美匹配
只要将原来的Kruscal模块改为KM算法即可
Code:
//by NewErA
#include <bits/stdc++.h> using namespace std;
typedef long long ll;
const int INF=<<; struct Vector
{
int x,y;
Vector(const int &A,const int &B){x=A,y=B;}Vector(){}
};
Vector operator - (const Vector &a,const Vector &b){return Vector(a.x-b.x,a.y-b.y);}
int Cross(const Vector &a,const Vector &b){return a.x*b.y-a.y*b.x;} const int MAXN=;
int T,n,G[MAXN][MAXN],dat1[MAXN][MAXN],dat2[MAXN][MAXN];
Vector mina,minb,ans;
ll res; int match[MAXN*],slack[MAXN*],lx[MAXN],ly[MAXN];
bool visx[MAXN],visy[MAXN]; bool dfs(int u)
{
visx[u]=true;
for(int i=;i<=n;i++)
{
if(visy[i]) continue;
int d=lx[u]+ly[i]-G[u][i];
if(!d)
{
visy[i]=true;
if(match[i]==- || dfs(match[i]))
{
match[i]=u;
return true;
}
}
else slack[i]=min(d,slack[i]);
}
return false;
} Vector KM() //$O(n^3)$的KM做法
{
memset(match,-,sizeof(match));
fill(lx,lx+MAXN,-INF);memset(ly,,sizeof(ly));
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
lx[i]=max(lx[i],G[i][j]);
for(int i=;i<=n;i++)
{
fill(slack,slack+MAXN,INF);
while(true)
{
memset(visx,,sizeof(visx));
memset(visy,,sizeof(visy));
if(dfs(i)) break;
else
{
int d=INF;
for(int i=;i<=n;i++)
if(!visy[i]) d=min(d,slack[i]);
for(int i=;i<=n;i++)
{
if(visx[i]) lx[i]-=d;
if(visy[i]) ly[i]+=d;
else slack[i]-=d;
}
}
}
} Vector cur=Vector(,);
for(int i=;i<=n;i++)
cur.x+=dat1[match[i]][i],cur.y+=dat2[match[i]][i]; if(res>(ll)cur.x*(ll)cur.y) res=(ll)cur.x*(ll)cur.y; //注意开long long
return cur;
} void Solve(Vector A,Vector B)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
G[i][j]=-(dat1[i][j]*(A.y-B.y)+dat2[i][j]*(B.x-A.x)); //修改权值
Vector C=KM();
if(Cross(B-A,C-A)>=) return;
Solve(A,C);Solve(C,B);
} int main()
{
cin >> T;
while(T--)
{
cin >> n;res=*;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
cin >> dat1[i][j],G[i][j]=-dat1[i][j]; //最小匹配转为最大匹配,权值由正变为负即可
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
cin >> dat2[i][j];
mina=KM();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
G[i][j]=-dat2[i][j];
minb=KM();
Solve(mina,minb);
cout << res << endl;
}
return ;
}
Review:
1、需要注意的就是最小匹配转为最大匹配的手法:
将原来的正权值求最小变为负权值求最大
2、千万不能再忘开long long 了!