人机与认知实验室

人机与认知实验室

    军事智能与民用智能不同,它有复杂性,因而会衍生出比民智更多的花样和不规矩;军事智能与民用智能又相似,它也是智能科学的一部分,都是为用户——这个上帝服务的,只不过,民智是让人舒服,而军智则是让人不舒服而已。未来的战争很可能是军民智融合,还未开始就已经结束,因为所有的对抗可能性都已经失去了意义。

准确地说,军事智能不仅包含科学,还涉及许多非科学的领域,如人文社会、哲学艺术、宗教巫术等等,这从世界上最早的兵书——《孙子兵法》的英文名字可见一斑:The art of war,所以军智的难度约等于智能的难度,应该是当前的民智所不及的(望有关人员息怒):当前的民智简单地说就是加了统计概率的自动化系统。未来军智的最优存在形态应该不是个体性的(异常先进的单平台武器——飞机大炮),而是系统性的(网络性的),更有可能是体系性的(跨不同网络的),并且还会不断自主升级。

如同民智没有共识的定义一样,军智除了应用领域比较明确之外,现在也没有共同一致的概念,将来也不会有,因为人本身就是一个极其不容易归纳概括的名词,凡是一涉及到人的行为,尤其是智能行为,更是变化莫测、莫衷一是、阴阳无界、出其不意了。德国军事家克劳塞维茨把战争中多方的智能博弈看作不透明的理论——The theory of war,其实也谈到了军智的不确定性和模糊性,甚至是超出了人类认知之外的感叹!

即使世界再复杂,情境再捉摸不定,也总有蛛丝马迹般的端倪会出现,从众多的公开信息分析,当前世界排名第一的美军对军智领域的重视程度也很高,其主要着力点两部分:一是机器学习,二是自主系统。机器学习就是形式化的(语法规范性的)代表,描述一个规则的事态;自主系统就是意向性(非形式化、事实经验性的)的特点,描述一个可能的事态。形式化推理就是将命题,逻辑联接词符号化,然后规定变形规则,进行公式间的转化变形,就可以用来表达推理。非形式化的推理就是不借助符号,而是直接通过自然需要来进行语句间的变换。一开始这两个部分可能是各自为战,分头突进,但过不了多久,该研究的真实意图就会和未来科技的发展趋势越发一致起来:人机融合智能系统。这也说明了军智的可见未来既不是单纯的机器学习,也不是可爱的自主系统,而很可能是结合人机的融合智能。

无论机器学习还是自主系统,都不外乎是为了精确地感知、正确地推理和准确地预测,这就涉及到了一个大家司空见惯又望之兴叹的智能核心概念—态势感知。

军智与民智中几个问题的探讨-LMLPHP

剑桥座舱——剑桥大学研制出的世界上最早的战斗机模拟座舱

无论军用还是民用,人工智能的本质都不是简单的赋能,而是人类的自我反馈,是他人在不同时空中的概念知识规则概率伦理道德意识在时空情境里的运行,所以常会出现人机融合的不适,不过也很正常:风马牛硬相及的结果。如果非要说,人工智能是赋能,那也是别人以前的可程序化可预测性知识赋予給现在“我”的能力而已。其中的知识一般分为两个层次,顶层由概念的、符号的、离散的或命题性的知识构成;底层的由感觉的、前概念的、亚符号的、连续的或非命题性的知识构成。底层的知识往往涉及到感性,与态势中的“态”有关;而顶层的知识常常涉及到理性,与态势中的“势”有关。

所谓态就是暂时如此的表象,所谓势就是本来如此的真像;态势感知就是通过转换不同的角度思考达到知己知彼的途径,一般是由表及里、由外到内、由左到右、由下到上、由态到势、由感到知,若能够把其逆过程融入进来,即同时还可以由里及表、由内到外、由右到左、由上到下、由势到态、由知到感,那么还可以加入深度以示强调,称之为深度态势感知。孙子所说的应该就是这种双向甚至更多向的交互换位融合,就是深度态势感知,而他言的也不仅仅是指敌我,还应涉及到各种物和装备,以及对环境的考虑。优秀的人员不仅可以及时感态、知态,而且还可以迅速地感势、知势。态倾向形式化,势倾向意向性,态势感知就是形式化衍生出的意向性描述,势态感知就是态势感知的逆向过程——资源管理。

态中常常包含专业层级中合乎常规的类型组合,势中往往违背了专业层级中合乎常规的类型组合,美其名曰:常态异势。重要的是,态的表面对称通常会掩盖深层势的不对称,犹如人体显而易见的左右对称掩盖了内部器官的不对称。

态的聚类可以限制态网络中的搜索。态网络中的所有搜索都源于一个核心态(即势)及通过扩散激活从这个势扩展开去。如果围绕一个态进行无限的扩展,最终会得到无数毫无关联的势。未加约束的搜索很快会产生出矛盾且无关的信息。受态聚类约束的搜索(通过态聚类区分其结果的搜索)得到的结果是具有系统性且连贯的。聚类是一种关联,由核心态-势引导的聚类搜索只检索相关的信息。

态势结构理论在逻辑上把态势刻画为基于结构上的类比匹配的系统,这些结构的构成态来自于不同类型态的聚类或势场。类比匹配出现于态势之间或者描述之间。类比态势具有共同的事实结构;而类比描述具有相同的概念结构。两者区别很大,类比描述不需要为真,只需要共有某些态的规则排列即可。康德可能是第一个区分相似性和类比的人,即类比不表示“两个对象之间的不完全相似性,而是两个并不相似的对象之间关系的完全相似性”,如“人类行动是机械力”。

在智能领域中,特别是态势感知处理过程里,态势与感知的形式化、意向性描述分析非常重要,其中形式化就是理性了的意向性,意向性就是感性了的形式化,逻辑就是连接感性与理性、形式化与意向性的桥梁。意向的可及性是其形式化的一个关键,同时,可及性也是可能性向现实性转化的前提条件。就意向性而言,可及性就是(而且几乎总是)态与势之间的限定交互,如同一个事物在不同时空情境(各种态+各样势)中转换的配对和映射、漫射、影射。事实上,从数学的映射到物理的漫射到心理的影射都涉及智能问题,既是逻辑命题与经验命题之间的相互融合过程,也是人类理—解、感—知过程,其中从理到解的一部分变成了人工智能。目前人工智能最难突破的是非家族相似性的漫射、影射问题,人机合作则有利于该问题的解决:人的意向性是形而上,机的形式化是形而下,人机融合就是两者虚实之间的道器结合。差异会产生变化的动力,人是容易感知到前提条件变化差异的,机器对此应对明显不足,如何使机器产生感知外部前提条件的变化,并依此而随机应变。例如,人类的词语、概念、语义不是固定的,是随着情境的变化而自然变化的,而机器的这种畸变就小的多或基本没有,这也是人机融合的一大障碍,变与不变的对立,如何统一就是关键点。

如果说态势感知是形式化的系统,那么深度态势感知就是加了意向性的形式化系统。我们不苛求为深度态势感知提出完美的字面解释,而是希望能给出其中意向性的逻辑释义,毫无疑问,逻辑释义会丢失意向性中某些最令人兴奋的方面:弦外之音、美学意境、拓扑效果。但是我们关心的是真值,我们对意向性的认知意义和形式化的效果感兴趣。语言、逻辑就是把意向性进行形式化的一种工具。艺术与科学的转换也是如此。文化、变化、转化、异化等等中的“化”很有味道,其中不仅仅有融合的意思,也有改变的痕迹,可以笑称为“化”学。同样,状态、动态、变态中的“态”与趋势、形势、局势中的“势”构成的态势图谱也远比知识图谱更可靠、高效、灵巧。究其因,对人而言,事物的属性是变化的,事物之间的关系也是变化的,对机而言,事物的属性是不变的,并且还被人定义了关系变化的区间值域,如知识图谱。

对于自主系统而言其实往往就是主动的否定系统(如小孩子成长中最先会说的动词是不(no)、没有、别,这意味着他/她要自主了),而同意常常意味着失去自我(如小孩子若用好的(ok)、同意、太棒了等表达自己观点时,就意味着ta 开始失去自我了)……当然否定自我也只是一种自主,只不过目前机器距此还甚远。如反思产生出的各种隐喻(这是只有人类才具有的特殊能力),隐喻是言外之意,非语法,逻辑是弦内之音,有语法。其实仔细想想,真实的世界不是既有黑也有白吗?所谓的法不就是非少了些吗?规则的形成莫不如此:从小概到大率,然后从合法到非法,隐喻也有法,不过和形式逻辑的法有所不同,隐喻里的法不是语法,是义法、用法,不过时间一长,达成共识,也会变成明喻,变成语法。法就是达成一致了的共识,无法就无天,天就是共识的边界。隐喻不是对态而是对势的指向,是逻辑的逻辑,同时也是大胆假设(想象)下的小心论证(逻辑)。

人可以把握实在的可能性,机可以运行逻辑的可能性,两者都会产生因果或相关关系,但这些关系具有不同的意义。即也许存在多重的因果或相关关系于人机融合之中,这些关系有显有隐,交融在一起,进而构造生成了复杂性问题。在复杂系统中可能交织在一起形成多个因果或相关关系嵌套纠缠,而我们注意到的与实际的关系经常存在不一致性。赋予机器智能的假设前提基本上都是有限的,这种有限性限制了众多的变化可能性。这些问题的解决不是靠增添新经验而是靠集合整理我们早已知道的东西——常识。人自身的感和觉也有隐协议,这些默会的协议支配者人的态势感知,是先视后识?还是先识后视?抑或两者在何种态势下混合使用,而且每个人的方式都不同——习惯阅历使然。

人之间的交流也有不少协议,而且这些协议在相互交流中切换自如,游刃有余,不知不觉,变化多端,甚至可以在自相矛盾中自圆其说(如自然语言里的多义性),这些协议中有些是隐性的常识规则,有些是个性化的性格习惯,总体上,两者间的边界模糊,弹性十足,约束宽松,条件灵活……而人机之间的交互协议相比之下,显得是那样的单调、机械、数学,界面分明,有板有眼,一丝不苟,缺乏情趣!

人,尤其是厉害的人,总是能抓住最本质的东西,找到最合适的角度,使得不同现象间的深刻联系浮出水面。机器也正在朝着这个方向被塑造……人会犯错,机器犯的错误也是人错,我们很多经验与对真理的识得也是从错误中得来的。当机器也会真犯错的时候,颠覆就真的开始了……

无维的数据信息衍生出无不为的智能,有维的知识(图谱)衍生出的只是有为的人工智能。孟子说,独乐乐不如众乐乐。幸福越与人共享,它的价值越增加。如果你把快乐告诉一个朋友,你将得到两个快乐。其实,对于智能而言,亦是如此,三个臭皮匠相互分享数据信息,智能的融合价值越增加。如果你把知识告诉一个伙伴,你也将在知识的流动中得到更多的知识。就像你在跟同学讲清楚一道难题过程中,常常会得到许多自己独自思考时没有想到的东西一样。数据孤立静止时没有多少价值,一旦流动起来就会形成有价值的信息和知识,流动的数量越大速度越快方向越明确融合越充分,智能化的成分越多,智能程度也就越大。

计算的确可以让机器承担很多操作性的任务,但执行操作并不等同于替代执行操作的人。人作为自然实体所进行的操作,与机器通过计算而实现的操作相比,有一个至关重要的区别,就是约翰·塞尔所强调的意向性维度。机器的操作不是意向性的活动,因为它不能解释自己的操作;而人的行动则是意向性的,是人所具备的概念能力的体现,在操作的同时也在进行着自我解释的活动。智慧总是关联到决定人们如何理解事实的那些价值目标上。不论是军智还是民智,都有一个反思内在价值追求的向度,这只能由人的意向性自我解释来实现,而不可能由非人来实现。

归根到底,机器所能做的只是计算而已,而在计算与有意义的人类生活之间,仍然有着根本的区别。正如拿破仑所认识到的,世界上有两种力量:刀剑和思想。从长远来看,刀剑总是被思想打败人是由其信念所构成的,他即他所信(《薄伽梵歌》)。智慧不同于科学知识。科学关心事实如何,但智慧不能只关心事实,还要更关心如何给事物以价值和意义,这就是一个道德实践的维度。

    军智与民智最后面临的终极问题很可能不是科技问题,还是那个永恒的话题——道德伦理,这也是超越了智能的智能。

军智与民智中几个问题的探讨-LMLPHP


12-30 13:36