验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。

例如:

1^3=1

2^3=3+5

3^3=7+9+11

4^3=13+15+17+19

这题也可以用数学公式推理,首项m*(m-1)+1,循环m次。

package test;

import java.util.Scanner;

//尼克彻斯定理4^3=13+15+17+19
public class exam14 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNext()) {
int m = scanner.nextInt();
System.out.println(GetSequeOddNum(m)); }
scanner.close();
} public static String GetSequeOddNum(int m) {
int s = m / 2;
int k = m * m;
String str = "";
if (m % 2 == 0) {
str=String.valueOf(k-1)+"+"+String.valueOf(k+1);
for (int i = 1; i < m / 2; i++) {
str = String.valueOf(k - 2 * i - 1) + "+" + str + "+"
+ String.valueOf(k + 2 * i + 1);
}
} else {
str = String.valueOf(k);
for (int i = 1; i <= m / 2; i++) {
str = String.valueOf(k - 2 * i) + "+" + str + "+"
+ String.valueOf(k + 2 * i);
}
}
return str; }
}
05-11 15:15