题目描述
辣鸡蒟蒻SOL是一个傻逼,他居然觉得数很萌!
好在在他眼里,并不是所有数都是萌的。只有满足“存在长度至少为2的回文子串”的数是萌的——也就是说,101是萌的,因为101本身就是一个回文数;110是萌的,因为包含回文子串11;但是102不是萌的,1201也不是萌的。
现在SOL想知道从l到r的所有整数中有多少个萌数。
由于答案可能很大,所以只需要输出答案对1000000007(10^9+7)的余数。
输入输出格式
输入格式:
输入包含仅1行,包含两个整数:l、r。
输出格式:
输出仅1行,包含一个整数,即为答案。
输入输出样例
输入样例#1:
1 100
输出样例#1:
10
输入样例#2:
100 1000
输出样例#2:
253
说明
记n为r在10进制下的位数。
对于10%的数据,n <= 3。
对于30%的数据,n <= 6。
对于60%的数据,n <= 9。
对于全部的数据,n <= 1000,l < r。
题解
我数位dp门都没入呢……
别指望我能讲啥,自己看代码理解吧……
只要注意一下下面代码里的$Pre$和$per$,一个表示前一个数,一个表示前两个数,因为回文数只会有$aba$和$aa$两种类型,然后只要注意特判一下当前位置是$1$的就行了
//minamoto
#include<iostream>
#include<cstring>
#include<cstdio>
#define ll long long
using namespace std;
const int N=,mod=1e9+;
char s1[N],s2[N];ll dp[N][N][];int a[N];
ll dfs(int pos,int Pre,int per,int t,int k,int flag){
if(pos<=) return t;
if(!flag&&~dp[pos][Pre][t]) return dp[pos][Pre][t];
int end=flag?a[pos]:;ll res=;
for(int i=;i<=end;++i)
(res+=dfs(pos-,i,k?Pre:-,t||(i==Pre&&k)||(i==per&&k),k||i,flag&&(i==end)))%=mod;
if(!flag&&k&&~per) dp[pos][Pre][t]=res;
return res;
}
int solve(char *s){
int len=,slen=strlen(s+);
while(slen) a[++len]=s[slen--]-'';
memset(dp,-,sizeof(dp));
return dfs(len,-,-,,,);
}
int main(){
scanf("%s%s",s1+,s2+);
int len=strlen(s1+);
if(s1[len]!=) s1[len]-=;
else s1[len-]-=,s1[len]='';
printf("%d\n",(solve(s2)-solve(s1)+mod)%mod);
return ;
}