初始化的调用过程:start_kernel()->mm_init()->kmem_cache_init(),下面分析一下具体代码。点击(此处)折叠或打开/* * Initialisation. Called after the page allocator have been initialised and * before smp_init(). */void __init kmem_cache_init(void){ size_t left_over; struct cache_sizes *sizes; struct cache_names *names; int i; int order; int node; /× 在非NUMA平台上,将use_alien_cache设置为0,此时cache_free_alien将禁止调用 ×/ if (num_possible_nodes() == 1) use_alien_caches = 0; /* initkmem_list3为全局变量,此时slab尚未完成初始化,kmalloc无法使用 */ /* #define NODES_SHIFT CONFIG_NODES_SHIFT */ /* #define MAX_NUMNODES (1 /* #define NUM_INIT_LISTS (3 * MAX_NUMNODES) */ /* CONFIG_NODES_SHIFT是当前系统配置的可支持的NUMA节点的最大个数,针对每个内存节点,包含: struct kmem_cache/struct arraycache_init/struct kmem_list3的slab(full/free/partial)所以是3倍的NUMA节点 */ for (i = 0; i NUM_INIT_LISTS; i++) { /× 针对链表、锁和成员的初始化,比较简单 ×/ kmem_list3_init(&initkmem_list3[i]); /× cache_cache是全局变量,是内核中第一个cache(struct kmem_cache),遍历当前所有节点,初始化为NULL ×/ if (i MAX_NUMNODES) cache_cache.nodelists[i] = NULL; } /× 将cache_cache中的nodelists指向initkmem_list3数组中对应成员,按照NUMA节点进行对应 ×/ /× CACHE_CACHES是cache_cache在内核cache链表中的索引,因为这里是第一个cache,所以为0 ×/ set_up_list3s(&cache_cache, CACHE_CACHE); /* * Fragmentation resistance on low memory - only use bigger * page orders on machines with more than 32MB of memory. */ /* 当内存大于32M时,slab_break_gfp_order为1(即每个slab最多占用2个页面),否则为0,其用于指定每个slab最多占用的页面数量,用于抑制碎片 ×/ /× 有一种可能是,当对象很大导致slab中一个对象都无法放入时,可以超过该值的限制 ×/ if (totalram_pages > (32 20) >> PAGE_SHIFT) slab_break_gfp_order = BREAK_GFP_ORDER_HI; /* Bootstrap is tricky, because several objects are allocated * from caches that do not exist yet: * 1) initialize the cache_cache cache: it contains the struct * kmem_cache structures of all caches, except cache_cache itself: * cache_cache is statically allocated. * Initially an __init data area is used for the head array and the * kmem_list3 structures, it's replaced with a kmalloc allocated * array at the end of the bootstrap. * 2) Create the first kmalloc cache. * The struct kmem_cache for the new cache is allocated normally. * An __init data area is used for the head array. * 3) Create the remaining kmalloc caches, with minimally sized * head arrays. * 4) Replace the __init data head arrays for cache_cache and the first * kmalloc cache with kmalloc allocated arrays. * 5) Replace the __init data for kmem_list3 for cache_cache and * the other cache's with kmalloc allocated memory. * 6) Resize the head arrays of the kmalloc caches to their final sizes. */ /× 根据当前CPU,获取对应的NUMA节点的ID ×/ node = numa_node_id(); /* 1) create the cache_cache */ /× cache_chain 是内核slab cache链表的链表头 ×/ INIT_LIST_HEAD(&cache_chain); /× cache_cache是kernel的第一个slab cache,链接到cache_chain上 ×/ list_add(&cache_cache.next, &cache_chain); /* 设置cache的着色偏移为cache_line_size的大小 */ cache_cache.colour_off = cache_line_size(); /× 设置cache_cache的local_cache直接指向全局变量的cache ×/ cache_cache.array[smp_processor_id()] = &initarray_cache.cache; /× 给当前的NUMA内存节点的slab赋值,指向全局变量的slab的几个链表 ×/ /* 从目前的代码看,此处应该与set_up_list3s重复了,list3s中遍历了所有的NUMA节点进行了赋值,包括了当前的NUMA节点 */ cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; /* * struct kmem_cache size depends on nr_node_ids, which * can be less than MAX_NUMNODES. */ /× buffer_size保存的是slab中的对象大小,看注释已经很清楚,以nr_node_ids为准,所以对对象大小进行了重新计算 ×/ cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) + nr_node_ids * sizeof(struct kmem_list3 *);#if DEBUG cache_cache.obj_size = cache_cache.buffer_size;#endif /× 将对象大小按照cache_line_size进行对齐 ×/ cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size()); /× 计算对象大小的倒数,用于计算对象在slab中的索引 ×/ cache_cache.reciprocal_buffer_size = reciprocal_value(cache_cache.buffer_size); for (order = 0; order MAX_ORDER; order++) { /× 获取cache_cache中的对象的最大数目 ×/ cache_estimate(order, cache_cache.buffer_size, cache_line_size(), 0, &left_over, &cache_cache.num); if (cache_cache.num) break; } BUG_ON(!cache_cache.num); /× slab包含的页面个数,2^gfporder个 ×/ cache_cache.gfporder = order; /× slab着色区的大小,以colour_off为单位 ×/ cache_cache.colour = left_over / cache_cache.colour_off; /* slab管理区大小 */ cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + sizeof(struct slab), cache_line_size()); /* 2+3) create the kmalloc caches */ /* 创建kmalloc所用的general_cache,即普通高速缓存,普通高速缓存分为(2^0)/(2^1)...区域的个数以及大小与系统内存配置 以及PAGE_SIZE/L1_CACHE_BYTES/KMALLOC_MAX_SIZE相关,具体在linux/kmalloc_sizes.h中定义,每个对应两个高速缓存, 一个是DMA高速缓存,一个是常规高速缓存,存放在struct cache_sizes malloc_sizes[]中 ×/ sizes = malloc_sizes; names = cache_names; /* * Initialize the caches that provide memory for the array cache and the * kmem_list3 structures first. Without this, further allocations will * bug. */ /* 创建struct arraycache_init对应的普通cache,后续初始化会使用 */ /× INDEX_AC是计算local cache所用的struct arraycache_init对象在kmalloc size中的索引,即属于哪一级大小的索引,看一下INDEX_AC的定义一切了然 ×/ sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN, ARCH_KMALLOC_FLAGS|SLAB_PANIC, NULL); /× 如果struct kmem_list3和struct arraycache_init对应的kmalloc size索引不同,则为kmem_list3创建自己的cache,否则共用一个 ×/ if (INDEX_AC != INDEX_L3) { sizes[INDEX_L3].cs_cachep = kmem_cache_create(names[INDEX_L3].name, sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN, ARCH_KMALLOC_FLAGS|SLAB_PANIC, NULL); } /× 创建结束以上两个通用cache之后,slab_early_init阶段结束 ×/ slab_early_init = 0; /* 下面开始循环创建kmalloc各个级别的cache,各级别的定义参见linux/kmalloc_sizes.h文件 */ while (sizes->cs_size != ULONG_MAX) { /* * For performance, all the general caches are L1 aligned. * This should be particularly beneficial on SMP boxes, as it * eliminates "false sharing". * Note for systems short on memory removing the alignment will * allow tighter packing of the smaller caches. */ /× 对应大小的kmalloc的cache还未创建,所以下面需要进行创建 ×/ if (!sizes->cs_cachep) { sizes->cs_cachep = kmem_cache_create(names->name, sizes->cs_size, ARCH_KMALLOC_MINALIGN, ARCH_KMALLOC_FLAGS|SLAB_PANIC, NULL); }#ifdef CONFIG_ZONE_DMA /× 对于kmalloc的cache,每个级别都对应一个普通的cache和一个dma的cache,如果支持dma则创建之 ×/ sizes->cs_dmacachep = kmem_cache_create( names->name_dma, sizes->cs_size, ARCH_KMALLOC_MINALIGN, ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| SLAB_PANIC, NULL);#endif /× 向下循环 ×/ sizes++; names++; } /* 4) Replace the bootstrap head arrays */ /× 下面开始使用kmalloc申请的动态内存替换掉之前的静态变量 ×/ /× 从代码可以看出需要替换的是initarray_cache.cache和initarray_generic.cache ×/ { struct array_cache *ptr; /* 申请cache_cache所用的local cache的空间 */ ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); /× 复制原initarray_cache.cache到新的位置 ×/ BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); memcpy(ptr, cpu_cache_get(&cache_cache), sizeof(struct arraycache_init)); /* * Do not assume that spinlocks can be initialized via memcpy: */ spin_lock_init(&ptr->lock); /× 更新,指向动态申请的内存区 ×/ cache_cache.array[smp_processor_id()] = ptr; /* 申请空间,用于替换initarray_generic.cache */ ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) != &initarray_generic.cache); memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), sizeof(struct arraycache_init)); /* * Do not assume that spinlocks can be initialized via memcpy: */ spin_lock_init(&ptr->lock); /× 更新,指向新申请的内存 ×/ malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = ptr; } /* 5) Replace the bootstrap kmem_list3's */ /× 同4一样,使用动态申请的内存,替换静态分配的slab的几个链表 ×/ { int nid; for_each_online_node(nid) { init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); init_list(malloc_sizes[INDEX_AC].cs_cachep, &initkmem_list3[SIZE_AC + nid], nid); if (INDEX_AC != INDEX_L3) { init_list(malloc_sizes[INDEX_L3].cs_cachep, &initkmem_list3[SIZE_L3 + nid], nid); } } } /× 更新slab系统的初始化的进度 ×/ g_cpucache_up = EARLY;}继续分析一下一些子函数的代码点击(此处)折叠或打开static void kmem_list3_init(struct kmem_list3 *parent){ /* 全被占用的slab链表 */ INIT_LIST_HEAD(&parent->slabs_full); /* 部分空闲的slab链表 */ INIT_LIST_HEAD(&parent->slabs_partial); /* 全部空闲的slab链表 */ INIT_LIST_HEAD(&parent->slabs_free); parent->shared = NULL; parent->alien = NULL; parent->colour_next = 0; spin_lock_init(&parent->list_lock); parent->free_objects = 0; parent->free_touched = 0;}点击(此处)折叠或打开/* * For setting up all the kmem_list3s for cache whose buffer_size is same as * size of kmem_list3. *//× set_up_list3s(&cache_cache, CACHE_CACHE),其中CACHE_CACHE为0 ×//* 设置cache_cache的nodeliste指向静态分配的全局变量,即slab的三个链表都使用静态全局的定义 */static void __init set_up_list3s(struct kmem_cache *cachep, int index){ int node; /× 遍历NUMA内存节点 ×/ for_each_online_node(node) { /× 指向静态全局定义的slab list ×/ cachep->nodelists[node] = &initkmem_list3[index + node]; /× 设置回收时间,next_reap是两次缓存回收之间必须经历的时间间隔 ×/ cachep->nodelists[node]->next_reap = jiffies + REAPTIMEOUT_LIST3 + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; }}点击(此处)折叠或打开/* * Calculate the number of objects and left-over bytes for a given buffer size. *//* gfporder: 取值0~11遍历直到计算出cache的对象数量跳出循环,slab由2^gfporder个页面组成 buffer_size: 为当前cache中对象经过cache_line_size对齐后的大小 align: 是cache_line_size,按照该大小对齐 flags: 此处为0,用于标识内置slab还是外置slab left_over: 输出值,记录slab中浪费空间的大小 num:输出值,用于记录当前cache中允许存在的对象数目 */static void cache_estimate(unsigned long gfporder, size_t buffer_size, size_t align, int flags, size_t *left_over, unsigned int *num){ int nr_objs; size_t mgmt_size; /× PAGE_SIZE代表一个页面,slab_size记录需要多少个页面 ×/ size_t slab_size = PAGE_SIZE gfporder; /* * The slab management structure can be either off the slab or * on it. For the latter case, the memory allocated for a * slab is used for: * * - The struct slab * - One kmem_bufctl_t for each object * - Padding to respect alignment of @align * - @buffer_size bytes for each object * * If the slab management structure is off the slab, then the * alignment will already be calculated into the size. Because * the slabs are all pages aligned, the objects will be at the * correct alignment when allocated. */ /× 外置slab ×/ if (flags & CFLGS_OFF_SLAB) { mgmt_size = 0; /* slab中不含管理对象,全部用于存储slab对象,计算当前的对象数量 */ nr_objs = slab_size / buffer_size; /* 如果超过阀值,则取上限 */ if (nr_objs > SLAB_LIMIT) nr_objs = SLAB_LIMIT; } else { /* * Ignore padding for the initial guess. The padding * is at most @align-1 bytes, and @buffer_size is at * least @align. In the worst case, this result will * be one greater than the number of objects that fit * into the memory allocation when taking the padding * into account. */ /× 内置的slab管理对象,slab管理对象与slab对象在一起。 此时slab页面中包含struct slab管理对象,kmem_bufctl_t数组和slab对象,其中kmem_bufctl_t数组个数与slab对象数量一致 ×/ nr_objs = (slab_size - sizeof(struct slab)) / (buffer_size + sizeof(kmem_bufctl_t)); /* * This calculated number will be either the right * amount, or one greater than what we want. */ /× 计算cache_line对齐后的大小,如果超出slab总的大小,则对象数减1 ×/ if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size > slab_size) nr_objs--; /× 判断有无超过阀值,最大取阀值 ×/ if (nr_objs > SLAB_LIMIT) nr_objs = SLAB_LIMIT; /* 计算cache_line对齐后,管理对象的大小 */ mgmt_size = slab_mgmt_size(nr_objs, align); } /× 计算得到的slab对象的数目,通过num输出 ×/ *num = nr_objs; /× 计算当前slab中浪费的空间的大小 ×/ *left_over = slab_size - nr_objs*buffer_size - mgmt_size;}上面用到了cache_names和malloc_sizes两个数组,它们用于表示普通cache的名字和对应的大小,并且一一对应。可以看一下代码,比较简单。