/*
思路很简单,也不知道哪里错了TAT
*/
/*
N个点通过笛卡尔坐标表示
根节点是1,求最小树形图
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define MAXN 105
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int u,v;
double cost;
Edge(int uu=,int vv=,double cc=0.0):u(uu),v(vv),cost(cc){}
}edge[MAXN*MAXN];
struct node{
int x,y;
}nodes[MAXN];
double dist(int u,int v){
return sqrt((double)(nodes[u].x-nodes[v].x)*(nodes[u].x-nodes[v].x)+
(nodes[u].y-nodes[v].y)*(nodes[u].y-nodes[v].y));
}
int pre[MAXN],id[MAXN],vis[MAXN];
double in[MAXN];
double zhuliu(int root, int nv, int ne)
{
double ans = ;
int u, v, i, cnt;
while(true){
//0.初始化
for(i = ; i <= nv; ++i) in[i] = INF;
//1.找最小入边集
for(i = ; i <= ne; ++i){
u = edge[i].u; v = edge[i].v;
if(edge[i].cost < in[v] && u != v){
in[v] = edge[i].cost; pre[v] = u;
}
}
for(i = ; i <= nv; ++i)
if(in[i]==INF && i!=root)
return -;
//2.找非根无入边点(略),因为必定有解
//3.找环,加权,重新标号
memset(id, -, sizeof(id));
memset(vis, -, sizeof(vis));
cnt = in[root] = ;
for(i = ; i <= nv; ++i){
ans += in[i]; v = i;
while(vis[v] != i && v != root && id[v] == -){
vis[v] = i; v = pre[v];
}
if(v != root && id[v] == -){
for(u = pre[v]; u != v; u = pre[u])
id[u] = cnt;
id[v] = cnt++;
}
}
if(cnt == ) break; //无环,算法完成
for(i = ; i <= nv; ++i)
if(id[i] == -) id[i] = cnt++;
//4.缩点,遍历每一条边,重新构图
for(i = ; i <= ne; ++i){
v = edge[i].v;
edge[i].u = id[edge[i].u];
edge[i].v = id[edge[i].v];
if(edge[i].u != edge[i].v) edge[i].cost -= in[v];
}
//顶点数减少
nv = cnt; root = id[root];
}
return ans;
}
int main(){
int n,m,u,v;
while(scanf("%d%d",&n,&m)==){
for(int i=;i<=n;i++)
scanf("%d%d",&nodes[i].x,&nodes[i].y);
int totm=;
for(int i=;i<=m;i++){
scanf("%d%d",&u,&v);
if(u!=v)
edge[++totm]=Edge(u,v,dist(u,v));
}
int root=;
double res=zhuliu(root,n,totm);
if(res==-)
puts("poor snoopy");
else
printf("%.2lf\n",res);
}
return ;
}