题目大意:给你一张$n(n\leqslant5\times10^5)$个点$m(m\leqslant5\times10^5)$条边的有向图,有点权,给你起点和一些可能的终点。问从起点开始,到任意一个终点经过的点权和的最大值是多少。
题解:先把有向图缩点,然后从起点跑最长路,对每个终点取个最大值即可
卡点:求最长路写了$dijkstra$,然后死活调不出。
C++ Code:
#include <algorithm>
#include <cstdio>
#include <cctype>
#include <queue>
namespace __IO {
int ch;
inline int read() {
static int x;
while (isspace(ch = getchar())) ;
for (x = ch & 15; isdigit(ch = getchar()); ) x = x * 10 + (ch & 15);
return x;
}
}
using __IO::read; const int maxn = 500010, maxm = 500010;
int n, m;
int w[maxn], W[maxn]; namespace Graph {
int head[maxn], cnt;
struct Edge {
int from, to, nxt;
} e[maxm];
inline void addedge(int a, int b) {
e[++cnt] = (Edge) { a, b, head[a] }; head[a] = cnt;
} int DFN[maxn], low[maxn], idx;
int S[maxn], top, bel[maxn], scc;
bool inS[maxn];
void tarjan(int u) {
DFN[u] = low[u] = ++idx;
inS[S[++top] = u] = true;
int v;
for (int i = head[u]; i; i = e[i].nxt) {
v = e[i].to;
if (!DFN[v]) {
tarjan(v);
low[u] = std::min(low[u], low[v]);
} else if (inS[v]) low[u] = std::min(low[u], DFN[v]);
}
if (DFN[u] == low[u]) {
++scc;
do {
inS[v = S[top--]] = false;
W[bel[v] = scc] += w[v];
} while (v != u);
}
}
} int head[maxn], cnt;
struct Edge {
int to, nxt;
} e[maxm];
inline void addedge(int a, int b) {
e[++cnt] = (Edge) { b, head[a] }; head[a] = cnt;
} using Graph::scc;
using Graph::bel;
std::queue<int> q;
int dis[maxn];
bool inq[maxn];
void SPFA(int S) {
dis[S] = W[S];
q.push(S);
while (!q.empty()) {
int u = q.front(); q.pop();
inq[u] = false;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (dis[v] < dis[u] + W[v]) {
dis[v] = dis[u] + W[v];
q.push(v);
inq[v] = true;
}
}
}
} int S, ans;
int main() {
n = read(), m = read();
for (int i = 0, a, b; i < m; ++i) {
a = read(), b = read();
Graph::addedge(a, b);
}
for (int i = 1; i <= n; ++i) w[i] = read();
S = read();
Graph::tarjan(S);
for (int i = 1, u, v; i <= m; ++i) {
u = bel[Graph::e[i].from], v = bel[Graph::e[i].to];
if (u != v) addedge(u, v);
}
SPFA(bel[S]);
for (int i = read(), x; i; --i) ans = std::max(ans, dis[bel[x = read()]]);
printf("%d\n", ans);
return 0;
}