大数取模算法:
这个又不同于幂取模算法,对于几百万位的数字取模,直接的方法是行不通的。最好利用数论的知识 (a*b)%c = ((a%c)*b)%c ;
利用这个公式我们只要从n的一次方开始不断计算,乘于一个数同时就对其求余,这样就可以在不溢出的情况下得出最后的结果。
设bignum的个位数是x
设 m = (bignum-x)/10 ;
解得 bignum = 10*m + x ;
所以: bignum%n = (10*m+x)%n = (10*m)%n + x%n = ((m%n)*10)%n + x%n
有了这个等式就可以计算出最后的结果了。我们可以用递归或者循环来实现。
原题:
求余数
时间限制:1000 ms | 内存限制:65535 KB
难度:3
- 描述
- 现在给你一个自然数n,它的位数小于等于一百万,现在你要做的就是求出这个数除10003之后的余数
- 输入
- 第一行有一个整数m(1<=m<=8),表示有m组测试数据;
随后m行每行有一个自然数n。 - 输出
- 输出n整除10003之后的余数,每次输出占一行。
- 样例输入
3
4
5
465456541- 样例输出
4
5
6948 AC代码:#include<cstdio>
#include<iostream>
using namespace std; int main(){
int N;
scanf("%d",&N);
while(N--){
string M;
cin >> M;
int num = ;
int i;
for(i = ; i < M.size();i++){
num = (num* + (M[i] - ''))%;
}
cout << num << endl;
}
return ;
}