An Arc of Dream is a curve defined by following function:
where
a = A0
a = a *AX+AY
b = B0
b = b *BX+BY
What is the value of AoD(N) modulo 1,000,000,007?
where
a = A0
a = a *AX+AY
b = B0
b = b *BX+BY
What is the value of AoD(N) modulo 1,000,000,007?
InputThere are multiple test cases. Process to the End of File.
Each test case contains 7 nonnegative integers as follows:
N
A0 AX AY
B0 BX BY
N is no more than 10 , and all the other integers are no more than 2×10 .OutputFor each test case, output AoD(N) modulo 1,000,000,007.Sample Input
1
1 2 3
4 5 6
2
1 2 3
4 5 6
3
1 2 3
4 5 6
Sample Output
4
134
1902
| AX 0 AXBY AXBY 0 |
| 0 BX AYBX AYBX 0 |
{a[i-1] b[i-1] a[i-1]*b[i-1] AoD[i-1] 1}* | 0 0 AXBX AXBX 0 | = {a[i] b[i] a[i]*b[i] AoD[i] 1}
| 0 0 0 1 0 |
| AY BY AYBY AYBY 1 |
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<string>
using namespace std;
typedef unsigned long long LL;
#define MAXN 30
#define L 100006
#define MOD 1000000007
#define INF 1000000009
const double eps = 1e-;
/*
这个题目跟之前做的有一定区别,之前做的大多是表示一个序列的转移矩阵(用一列 列向量表示一个序列的几项)
而这个题给出了 an 的转移关系 bn的转移关系 要求 an*bn的前n项和
应当扩充列的范围(矩阵表达的含义增加)
【An Bn An*Bn Sum(n)】 转移关系是很好列的,剩下的就是矩阵快速幂
*/
LL n, a0, ax, ay, b0, bx, by;
struct Mat
{
LL a[][];
Mat()
{
memset(a, , sizeof(a));
}
Mat operator*(const Mat& rhs)
{
Mat ret;
for (int i = ; i < ; i++)
{
for (int j = ; j < ; j++)
{
if(a[i][j])
{
for (int k = ; k < ; k++)
{
ret.a[i][k] = (ret.a[i][k] + a[i][j] * rhs.a[j][k]) % MOD;
}
}
}
}
return ret;
}
};
Mat fpow(Mat m, LL b)
{
Mat ans;
for (int i = ; i < ; i++)
ans.a[i][i] = ;
while (b != )
{
if (b & )
ans = m * ans;
m = m * m;
b = b / ;
}
return ans;
}
int main()
{
while (scanf("%lld", &n) != EOF)
{
scanf("%lld%lld%lld%lld%lld%lld", &a0, &ax, &ay, &b0, &bx, &by);
if (n == )
{
printf("0\n");
continue;
}
Mat M;
M.a[][] = ax%MOD, M.a[][] = ax%MOD*by%MOD, M.a[][] = ax%MOD*by%MOD;
M.a[][] = bx%MOD, M.a[][] = M.a[][] = bx%MOD*ay%MOD;
M.a[][] = M.a[][] = ax%MOD*bx%MOD;
M.a[][] = ;
M.a[][] = ay%MOD, M.a[][] = by%MOD, M.a[][] = M.a[][] = ay%MOD*by%MOD, M.a[][] = ;
if (n == )
printf("%lld\n", a0*b0%MOD);
else
{
M = fpow(M, n - );
LL ans = ;
ans = (ans + a0*M.a[][] % MOD) % MOD;
ans = (ans + b0*M.a[][] % MOD) % MOD;
ans = (ans + +a0%MOD*b0%MOD*M.a[][] % MOD) % MOD;
ans = (ans + a0%MOD*b0%MOD*M.a[][] % MOD) % MOD;
ans = (ans +M.a[][] % MOD) % MOD;
printf("%lld\n", ans);
}
}
}