这题终于是正经第一题感觉了。
只需要对相交或相切的球建一条边,然后对所有与底面有交点的球连边,再对所有与顶面有交点的球连边,bfs判断上下连通性即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
struct point
{
long long x,y,z;
}p[];
bool v[];
double c(point a,point b)
{
return sqrt(1ll*(a.x-b.x)*(a.x-b.x)+1ll*(a.y-b.y)*(a.y-b.y)+1ll*(a.z-b.z)*(a.z-b.z));
}
int head[],cnt;
struct node
{
int to,nex;
}e[];
void add(int x,int y)
{
e[++cnt].to=y;e[cnt].nex=head[x];head[x]=cnt;
}
queue<int>q;int n,h,r;
bool bfs()
{
memset(v,,sizeof(v));
while(!q.empty())q.pop();
q.push();v[]=;
while(!q.empty())
{
int x=q.front();q.pop();if(x==n+)return ;
for(int i=head[x];i;i=e[i].nex)
{
int y=e[i].to;
if(v[y])continue;
q.push(y);v[y]=;
}
}
return ;
}
int main()
{
//freopen("cheese.in","r",stdin);
//freopen("cheese.out","w",stdout);
int t;
scanf("%d",&t);
while(t--)
{
cnt=;memset(head,,sizeof(head));
scanf("%d%d%d",&n,&h,&r);
for(int i=;i<=n;++i)
{
scanf("%lld%lld%lld",&p[i].x,&p[i].y,&p[i].z);
}
p[].x=p[].y=p[].z=;p[n+].x=p[n+].y=;p[n+].z=h;
for(int i=;i<=n;++i)
{
for(int j=i+;j<=n;++j)
{
double dis=c(p[i],p[j]);
if(dis>r+r)continue;add(i,j),add(j,i);
}
}
for(int i=;i<=n;++i)
{
if(p[i].z<=r&&p[i].z>=-r)add(,i);
if(p[i].z>=h-r&&p[i].z<=h+r)add(i,n+);
}
if(bfs())puts("Yes");
else puts("No");
}
//fclose(stdin);
//fclose(stdout);
return ;
}