题目
一个人写了n封不同的信及相应的n个不同的信封,他把这n封信都装错了信封,问都装错信封的装法有多少种?
解体思路
用A、B、C……表示写着n位友人名字的信封,a、b、c……表示n份相应的写好的信纸。把错装的总数为记作f(n)。假设把a错装进B里了(意味着b不能装入B了),包含着这个错误的一切错装法分两类:
(1)b装入A里,这时每种错装的其余部分都与A、B、a、b 无关,应有f(n-2)种错装法。
(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的) 的信纸b、c……装入(除B外的)n-1个信封A、C……,显然这时装错的方法有f(n-1)种。
总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种。a装入C,装入D……的n-2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此:
f(n)=(n-1)(f(n-1)+f(n-2))
程序代码
hdu1465
#include "stdio.h"
__int64 f(int n);
int main()
{
int n;
__int64 a;
while(scanf("%d",&n)!=EOF)
{
a = f(n);
printf("%I64d\n", a);
}
return 0;
}
__int64 f(int n)
{
if (n == 1) return 0;
if (n == 2) return 1;
if (n > 2) return (n-1)*(f(n-1)+f(n-2));
}
#include "stdio.h"
long long int f(int n);
int main()
{
int n;
long long int a;
while(scanf("%d",&n)!=EOF)
{
a = f(n);
printf("%lld\n", a);
}
return 0;
}
long long int f(int n)
{
if (n == 1) return 0;
if (n == 2) return 1;
if (n > 2) return (n-1)*(f(n-1)+f(n-2));
}
另外两种解法
#include <stdio.h>
int main()
{
int n,i,a[50];
scanf("%d",&n);
for(i=1;i<=n;i++)
{
if(i==1)
a[i]=0;
if(i==2)
a[i]=1;
else
a[i]=(i-1)*(a[i-1]+a[i-2]);
}
printf("%d\n",a[n]);
return 0;
}
#include <stdio.h>
int main()
{
int n,i,a[50];
a[1]=0;
a[2]=1;
for(i=3;i<50;i++)
a[i]=(i-1)*(a[i-1]+a[i-2]);
scanf("%d",&n);
printf("%d\n",a[n]);
return 0;
}