经常有一些需要做id打通的场景,比如用户id打通等,

问题抽象是每条数据都可以解析出一个或多个kv pair:(id_type,id),然后需要将某一个kv pair匹配的多条数据进行merge;

比如:

其中data1和data2通过('type1', 'id1')打通,data1和data3通过('type2', 'id2')打通,最终data1、data2、data3打通成一条数据

先定义基础类和方法

  class Data {
def getId : String = ""
} def merge(dataArr : Array[(Map[Byte, String], Data)]) : (Map[Byte, String], Data) = dataArr.head
def generateUUID : String = ""

其中

1)Data表示数据抽象,每条数据都有一个id;

2)Map[Byte, String]表示数据中的kv pair,即 Map[id_type, id]

3)merge将多条数据打通成一条数据;

先看最简单的递归实现

  def unionDataRDD1(rdd : RDD[(Map[Byte, String], Data)]) : RDD[(Map[Byte, String], Data)] = {
var result = rdd.keyBy(_._2.getId).groupByKey.map(item => merge(item._2.toArray)).cache
//Array[id_type]
val idTypes = result.flatMap(item => item._1.keys).distinct.collect
idTypes.foreach(item => result = result.filter(_._1.contains(item)).keyBy(_._1.get(item).get).groupByKey.map(item => merge(item._2.toArray)).union(result.filter(!_._1.contains(item))))
result
}

性能不太好,再看优化后的非递归实现

  def unionDataRDD2(rdd : RDD[(Map[Byte, String], Data)]) : RDD[(Map[Byte, String], Data)] = {
val result = rdd.keyBy(_._2.getId).groupByKey.map(item => merge(item._2.toArray)).cache //((id_type, id), group)
val idGroupRDD = result.flatMap(item => {val uuid = generateUUID; item._1.toArray.map(entry => (entry, uuid))}).cache
//Array(Array(group))
val unionMap = idGroupRDD.groupByKey.map(_._2.toArray.distinct).filter(_.length > 1).collect
//Map(group -> union_group)
.foldLeft(Map[String, String]())((resultUnion, arr) => {
val existingGroupMap = arr.collect({case group : String if resultUnion.contains(group) => (group, resultUnion.get(group).get)}).toMap
if (existingGroupMap == null || existingGroupMap.isEmpty) resultUnion ++ arr.collect({case group : String => (group -> arr.head)}).toMap
else if (existingGroupMap.size == 1) resultUnion ++ arr.collect({case group : String => (group -> existingGroupMap.head._2)}).toMap
else {
val newUnionMap = existingGroupMap.map(_._2).collect({case group : String => (group -> existingGroupMap.head._2)}).toMap
resultUnion.collect({case entry : (String, String) => if (newUnionMap.contains(entry._2)) (entry._1, newUnionMap.get(entry._2).get) else entry}) ++ arr.collect({case group : String => (group -> newUnionMap.head._2)}).toMap
}
}) //((id_type, id), union_group)
val groupMap = idGroupRDD.map(item => (item._1, if (unionMap.contains(item._2)) unionMap.get(item._2).get else null)).filter(_._2 != null).collect.toMap
//(union_group, data)
val groupRDDWithUnion = result.map(item => (item._1.collectFirst({case entry : (Byte, String) if groupMap.contains(entry) => groupMap.get(entry).get}), item)).cache
groupRDDWithUnion.filter(_._1 != None).groupByKey.map(item => merge(item._2.toArray)).union(groupRDDWithUnion.filter(_._1 == None).map(_._2))
}

第二版优化

  def unionDataRDD3(rdd : RDD[(Map[Byte, String], Data)]) : RDD[(Map[Byte, String], Data)] = {
val result = rdd.keyBy(_._2.getId).groupByKey.map(item => merge(item._2.toArray)).cache //((id_type, id), Set[group])
val idGroupArray = result.zipWithUniqueId().flatMap(item => item._1._1.toArray.map(entry => (entry, item._2.toString))).aggregateByKey(Set[String]())((result, item) => result + item, (result1, result2) => result1 ++ result2).collect //Array(Array(group))
val unionMap = idGroupArray.map(_._2).foldLeft(Map[String, String]())((resultUnion, arr) => {
val existingGroupMap = arr.collect({case group : String if resultUnion.contains(group) => (group, resultUnion.get(group).get)}).toMap
if (existingGroupMap == null || existingGroupMap.isEmpty) resultUnion ++ arr.collect({case group : String => (group -> arr.head)}).toMap
else if (existingGroupMap.size == 1) resultUnion ++ arr.collect({case group : String => (group -> existingGroupMap.head._2)}).toMap
else {
val newUnionMap = existingGroupMap.map(_._2).collect({case group : String => (group -> existingGroupMap.head._2)}).toMap
resultUnion.collect({case entry : (String, String) => if (newUnionMap.contains(entry._2)) (entry._1, newUnionMap.get(entry._2).get) else entry}) ++ arr.collect({case group : String => (group -> newUnionMap.head._2)}).toMap
}
}) //(id_type, (id, union_group))
val groupMap = idGroupArray.foldLeft(Map[Byte, Map[String, String]]())((result, item) => if (!result.contains(item._1._1)) result + (item._1._1 -> Map(item._1._2 -> unionMap.get(item._2.head).get)) else result + (item._1._1 -> (result.get(item._1._1).get + (item._1._2 -> unionMap.get(item._2.head).get))))
//(union_group, order)
result.map(item => (item._1.collectFirst({case entry : (Byte, String) if groupMap.contains(entry._1) && groupMap.get(entry._1).get.contains(entry._2) => groupMap.get(entry._1).get.get(entry._2).get}), item)).groupByKey.map(item => merge(item._2.toArray))
}
05-11 13:15