前面分析了memblock算法、内核页表的建立、内存管理框架的构建,这些都是x86处理的setup_arch()函数里面初始化的,因地制宜,具有明显处理器的特征。而start_kernel()接下来的初始化则是linux通用的内存管理算法框架了。
build_all_zonelists()用来初始化内存分配器使用的存储节点中的管理区链表,是为内存管理算法(伙伴管理算法)做准备工作的。具体实现:
- 【file:/mm/page_alloc.c】
- /*
- * Called with zonelists_mutex held always
- * unless system_state == SYSTEM_BOOTING.
- */
- void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
- {
- set_zonelist_order();
-
- if (system_state == SYSTEM_BOOTING) {
- __build_all_zonelists(NULL);
- mminit_verify_zonelist();
- cpuset_init_current_mems_allowed();
- } else {
- #ifdef CONFIG_MEMORY_HOTPLUG
- if (zone)
- setup_zone_pageset(zone);
- #endif
- /* we have to stop all cpus to guarantee there is no user
- of zonelist */
- stop_machine(__build_all_zonelists, pgdat, NULL);
- /* cpuset refresh routine should be here */
- }
- vm_total_pages = nr_free_pagecache_pages();
- /*
- * Disable grouping by mobility if the number of pages in the
- * system is too low to allow the mechanism to work. It would be
- * more accurate, but expensive to check per-zone. This check is
- * made on memory-hotadd so a system can start with mobility
- * disabled and enable it later
- */
- if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
- page_group_by_mobility_disabled = 1;
- else
- page_group_by_mobility_disabled = 0;
-
- printk("Built %i zonelists in %s order, mobility grouping %s. "
- "Total pages: %ld\n",
- nr_online_nodes,
- zonelist_order_name[current_zonelist_order],
- page_group_by_mobility_disabled ? "off" : "on",
- vm_total_pages);
- #ifdef CONFIG_NUMA
- printk("Policy zone: %s\n", zone_names[policy_zone]);
- #endif
- }
首先看到set_zonelist_order():
- 【file:/mm/page_alloc.c】
- static void set_zonelist_order(void)
- {
- current_zonelist_order = ZONELIST_ORDER_ZONE;
- }
此处用于设置zonelist的顺序,ZONELIST_ORDER_ZONE用于表示顺序(-zonetype, [node]distance),另外还有ZONELIST_ORDER_NODE表示顺序([node] distance, -zonetype)。但其仅限于对NUMA环境存在区别,非NUMA环境则毫无差异。
如果系统状态system_state为SYSTEM_BOOTING,系统状态只有在start_kernel执行到最后一个函数rest_init后,才会进入SYSTEM_RUNNING,于是初始化时将会接着是__build_all_zonelists()函数:
- 【file:/mm/page_alloc.c】
- /* return values int ....just for stop_machine() */
- static int __build_all_zonelists(void *data)
- {
- int nid;
- int cpu;
- pg_data_t *self = data;
-
- #ifdef CONFIG_NUMA
- memset(node_load, 0, sizeof(node_load));
- #endif
-
- if (self && !node_online(self->node_id)) {
- build_zonelists(self);
- build_zonelist_cache(self);
- }
-
- for_each_online_node(nid) {
- pg_data_t *pgdat = NODE_DATA(nid);
-
- build_zonelists(pgdat);
- build_zonelist_cache(pgdat);
- }
-
- /*
- * Initialize the boot_pagesets that are going to be used
- * for bootstrapping processors. The real pagesets for
- * each zone will be allocated later when the per cpu
- * allocator is available.
- *
- * boot_pagesets are used also for bootstrapping offline
- * cpus if the system is already booted because the pagesets
- * are needed to initialize allocators on a specific cpu too.
- * F.e. the percpu allocator needs the page allocator which
- * needs the percpu allocator in order to allocate its pagesets
- * (a chicken-egg dilemma).
- */
- for_each_possible_cpu(cpu) {
- setup_pageset(&per_cpu(boot_pageset, cpu), 0);
-
- #ifdef CONFIG_HAVE_MEMORYLESS_NODES
- /*
- * We now know the "local memory node" for each node--
- * i.e., the node of the first zone in the generic zonelist.
- * Set up numa_mem percpu variable for on-line cpus. During
- * boot, only the boot cpu should be on-line; we'll init the
- * secondary cpus' numa_mem as they come on-line. During
- * node/memory hotplug, we'll fixup all on-line cpus.
- */
- if (cpu_online(cpu))
- set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
- #endif
- }
-
- return 0;
- }
首先分析该函数里面调用的build_zonelists()和build_zonelist_cache()函数,其中build_zonelists():
- 【file:/mm/page_alloc.c】
- static void build_zonelists(pg_data_t *pgdat)
- {
- int node, local_node;
- enum zone_type j;
- struct zonelist *zonelist;
-
- local_node = pgdat->node_id;
-
- zonelist = &pgdat->node_zonelists[0];
- j = build_zonelists_node(pgdat, zonelist, 0);
-
- /*
- * Now we build the zonelist so that it contains the zones
- * of all the other nodes.
- * We don't want to pressure a particular node, so when
- * building the zones for node N, we make sure that the
- * zones coming right after the local ones are those from
- * node N+1 (modulo N)
- */
- for (node = local_node + 1; node < MAX_NUMNODES; node++) {
- if (!node_online(node))
- continue;
- j = build_zonelists_node(NODE_DATA(node), zonelist, j);
- }
- for (node = 0; node < local_node; node++) {
- if (!node_online(node))
- continue;
- j = build_zonelists_node(NODE_DATA(node), zonelist, j);
- }
-
- zonelist->_zonerefs[j].zone = NULL;
- zonelist->_zonerefs[j].zone_idx = 0;
- }
其中build_zonelists_node()函数实现:
- 【file:/mm/page_alloc.c】
- /*
- * Builds allocation fallback zone lists.
- *
- * Add all populated zones of a node to the zonelist.
- */
- static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
- int nr_zones)
- {
- struct zone *zone;
- enum zone_type zone_type = MAX_NR_ZONES;
-
- do {
- zone_type--;
- zone = pgdat->node_zones + zone_type;
- if (populated_zone(zone)) {
- zoneref_set_zone(zone,
- &zonelist->_zonerefs[nr_zones++]);
- check_highest_zone(zone_type);
- }
- } while (zone_type);
-
- return nr_zones;
- }
populated_zone()用于判断管理区zone的present_pages成员是否为0,如果不为0的话,表示该管理区存在页面,那么则通过zoneref_set_zone()将其设置到zonelist的_zonerefs里面,而check_highest_zone()在没有开启NUMA的情况下是个空函数。由此可以看出build_zonelists_node()实则上是按照ZONE_HIGHMEM—>ZONE_NORMAL—>ZONE_DMA的顺序去迭代排布到_zonerefs里面的,表示一个申请内存的代价由低廉到昂贵的顺序,这是一个分配内存时的备用次序。
回到build_zonelists()函数中,而它代码显示将本地的内存管理区进行分配备用次序排序,接着再是分配内存代价低于本地的,最后才是分配内存代价高于本地的。
分析完build_zonelists(),再回到__build_all_zonelists()看一下build_zonelist_cache():
- 【file:/mm/page_alloc.c】
- /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
- static void build_zonelist_cache(pg_data_t *pgdat)
- {
- pgdat->node_zonelists[0].zlcache_ptr = NULL;
- }
该函数与CONFIG_NUMA相关,用来设置zlcache相关的成员。由于没有开启该配置,故直接设置为NULL。
基于build_all_zonelists()调用__build_all_zonelists()入参为NULL,由此可知__build_all_zonelists()运行的代码是:
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
build_zonelists(pgdat);
build_zonelist_cache(pgdat);
}
主要是设置各个内存管理节点node里面各自的内存管理分区zone的内存分配次序。
__build_all_zonelists()接着的是:
for_each_possible_cpu(cpu) {
setup_pageset(&per_cpu(boot_pageset,cpu), 0);
#ifdefCONFIG_HAVE_MEMORYLESS_NODES
if (cpu_online(cpu))
set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
}
其中CONFIG_HAVE_MEMORYLESS_NODES未配置,主要分析一下setup_pageset():
- 【file:/mm/page_alloc.c】
- static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
- {
- pageset_init(p);
- pageset_set_batch(p, batch);
- }
setup_pageset()里面调用的两个函数较为简单,就直接过一下。先是:
- 【file:/mm/page_alloc.c】
- static void pageset_init(struct per_cpu_pageset *p)
- {
- struct per_cpu_pages *pcp;
- int migratetype;
-
- memset(p, 0, sizeof(*p));
-
- pcp = &p->pcp;
- pcp->count = 0;
- for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
- INIT_LIST_HEAD(&pcp->lists[migratetype]);
- }
pageset_init()主要是将struct per_cpu_pages结构体进行初始化,而pageset_set_batch()则是对其进行设置。pageset_set_batch()实现:
- 【file:/mm/page_alloc.c】
- /*
- * pcp->high and pcp->batch values are related and dependent on one another:
- * ->batch must never be higher then ->high.
- * The following function updates them in a safe manner without read side
- * locking.
- *
- * Any new users of pcp->batch and pcp->high should ensure they can cope with
- * those fields changing asynchronously (acording the the above rule).
- *
- * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
- * outside of boot time (or some other assurance that no concurrent updaters
- * exist).
- */
- static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
- unsigned long batch)
- {
- /* start with a fail safe value for batch */
- pcp->batch = 1;
- smp_wmb();
-
- /* Update high, then batch, in order */
- pcp->high = high;
- smp_wmb();
-
- pcp->batch = batch;
- }
-
- /* a companion to pageset_set_high() */
- static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
- {
- pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
- }
setup_pageset()函数入参p是一个struct per_cpu_pageset结构体的指针,per_cpu_pageset结构是内核的各个zone用于每CPU的页面高速缓存管理结构。该高速缓存包含一些预先分配的页面,以用于满足本地CPU发出的单一内存请求。而struct per_cpu_pages定义的pcp是该管理结构的成员,用于具体页面管理。原本是每个管理结构有两个pcp数组成员,里面的两条队列分别用于冷页面和热页面管理,而当前分析的3.14.12版本已经将两者合并起来,统一管理冷热页,热页面在队列前面,而冷页面则在队列后面。暂且先记着这么多,后续在Buddy算法的时候再详细分析了。
至此,可以知道__build_all_zonelists()是内存管理框架向后续的内存页面管理算法做准备,排布了内存管理区zone的分配次序,同时初始化了冷热页管理。
最后回到build_all_zonelists()函数。由于没有开启内存初始化调试功能CONFIG_DEBUG_MEMORY_INIT,mminit_verify_zonelist()是一个空函数。
基于CONFIG_CPUSETS配置项开启的情况下,而cpuset_init_current_mems_allowed()实现如下:
- 【file:/kernel/cpuset.c】
- void cpuset_init_current_mems_allowed(void)
- {
- nodes_setall(current->mems_allowed);
- }
这里面的current 是一个cpuset的数据结构,用来管理cgroup中的任务能够使用的cpu和内存节点。而成员mems_allowed,该成员是nodemask_t类型的结构体:
- 【file:/include/linux/nodemask.h】
- typedef struct { DECLARE_BITMAP(bits, MAX_NUMNODES); } nodemask_t;
该结构其实就是定义了一个位域,每个位对应一个内存结点,如果置1表示该节点内存可用。而nodes_setall则是将这个位域中每个位都置1。
末了看一下build_all_zonelists()里面nr_free_pagecache_pages()的实现:
- 【file:/mm/page_alloc.c】
- /**
- * nr_free_pagecache_pages - count number of pages beyond high watermark
- *
- * nr_free_pagecache_pages() counts the number of pages which are beyond the
- * high watermark within all zones.
- */
- unsigned long nr_free_pagecache_pages(void)
- {
- return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
- }
而里面调用的nr_free_zone_pages()实现为:
- 【file:/mm/page_alloc.c】
- /**
- * nr_free_zone_pages - count number of pages beyond high watermark
- * @offset: The zone index of the highest zone
- *
- * nr_free_zone_pages() counts the number of counts pages which are beyond the
- * high watermark within all zones at or below a given zone index. For each
- * zone, the number of pages is calculated as:
- * managed_pages - high_pages
- */
- static unsigned long nr_free_zone_pages(int offset)
- {
- struct zoneref *z;
- struct zone *zone;
-
- /* Just pick one node, since fallback list is circular */
- unsigned long sum = 0;
-
- struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
-
- for_each_zone_zonelist(zone, z, zonelist, offset) {
- unsigned long size = zone->managed_pages;
- unsigned long high = high_wmark_pages(zone);
- if (size > high)
- sum += size - high;
- }
-
- return sum;
- }
可以看到nr_free_zone_pages()遍历所有内存管理区并将各管理区的内存空间求和,其实质是用于统计所有的管理区可以用于分配的内存页面数。
接着在build_all_zonelists()后面则是判断当前系统中的内存页框数目,以决定是否启用流动分组机制(Mobility Grouping),该机制可以在分配大内存块时减少内存碎片。通常只有内存足够大时才会启用该功能,否则将会提升消耗降低性能。其中pageblock_nr_pages表示伙伴系统中的最高阶页块所能包含的页面数。
至此,内存管理框架算法基本准备完毕。