题目链接 飞扬的小鸟
考场的70分暴力(实际只有50分因为数组开小了……)
考场代码(数组大小已修改)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define LL long long
#define fi first
#define se second const int INF = << ;
const int N = + ;
const int M = + ; int dp[M][N], x[N], y[N], u[N], d[N];
int n, m, q, ans, xn, ln, rn, _max, pos;
bool c[N]; int main(){ scanf("%d %d %d ", &n, &m, &q);
rep(i, , n - ) scanf("%d %d ", x + i, y + i);
rep(i, , n) u[i] = m, d[i] = ;
memset(c, false, sizeof c);
rep(i, , q){
scanf("%d %d %d ", &xn, &ln, &rn);
c[xn] = true;
u[xn] = rn - ;
d[xn] = ln + ;
}
//rep(i, 0, n) printf("%d %d\n", d[i], u[i]);
memset(dp, 0xff70, sizeof dp);_max = dp[][];
rep(i, , m) dp[][i] = ;
rep(i, , n - ){
rep(j, d[i], u[i]){
if (dp[i][j] >= _max) continue;
int k = j - y[i];
if (k >= && k <= m) dp[i + ][k] = min(dp[i + ][k], dp[i][j]);
k = j;int num = ;
while (true){
k += x[i]; ++num;
if (k > m) k = m;
if (k >= && k <= m) dp[i + ][k] = min(dp[i + ][k], dp[i][j] + num);
if (k == m) break;
}
}
} ans = _max;
rep(i, , m) ans = min(ans, dp[n][i]);
if (ans < _max){
printf("%d\n%d\n", , ans);return ;
} bool flag = false;
ans = ;
dec(i, n, ) {rep(j, , m) if (dp[i][j] < _max) { pos = i - ;flag = true; break;} if (flag) break;}
dec(i, pos, ) if (c[i]) ++ans;
printf("%d\n%d\n", , ans); return ;
}
然后回过来想正解。
其实我们把很多时间都浪费在这里了:
while (true){
k += x[i]; ++num;
if (k > m) k = m;
if (k >= && k <= m) dp[i + ][k] = min(dp[i + ][k], dp[i][j] + num);
if (k == m) break;
}
其实这一步可以转过来直接利用完全背包的性质优化一下。转移只要O(1)就可以了。
这道题细节还是很多的,比较容易写挂。
正解:
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) const int INF = << ;
const int N = + ;
const int M = + ; int dp[N][M], x[N], y[N], u[N], d[N];
int n, m, q, ans, xn, ln, rn, _max, pos;
bool c[N]; int main(){ scanf("%d %d %d ", &n, &m, &q);
u[n] = m + ; d[n] = ;
rep(i, , n - ) scanf("%d %d ", x + i, y + i), u[i] = m + , d[i] = ; rep(i, , q){
scanf("%d %d %d ", &xn, &ln, &rn);
u[xn] = rn;
d[xn] = ln;
} rep(i, , n + ) rep(j, , m + ) dp[i][j] = INF; rep(i, , m) dp[][i] = ;
rep(i, , n){
rep(j, x[i - ], m){
dp[i][j] = min(dp[i][j], dp[i - ][j - x[i - ]] + );
dp[i][j] = min(dp[i][j], dp[i][j - x[i - ]] + );
} rep(j, m - x[i - ], m){
dp[i][m] = min(dp[i][m], dp[i - ][j] + );
dp[i][m] = min(dp[i][m], dp[i][j] + );
} rep(j, d[i] + , u[i] - ){
if (j + y[i - ] <= m) dp[i][j] = min(dp[i][j], dp[i - ][j + y[i - ]]);
} rep(j, , d[i]) dp[i][j] = INF;
rep(j, u[i], m) dp[i][j] = INF;
} ans = INF;
rep(i, , m) ans = min(ans, dp[n][i]);
if (ans != INF) return , printf("%d\n%d\n", , ans);
int t = q;
dec(i, n, ){
rep(j, , m) ans = min(ans, dp[i][j]);
if (ans != INF) break;
if (u[i] != m + ) --t;
} printf("%d\n%d\n", , t);
return ;
}