1127: [POI2008]KUP
https://lydsy.com/JudgeOnline/problem.php?id=1127
分析:
如果存在一个点大于等于k,小于等于2k的话,直接输出。
否则把点分成两类,一类是<k的,另一类是大于2k的,大于2k的一定没用。
然后找一个全部由小于2k的点中组成一个的矩形(悬线法),这个矩形有三种情况:1、<k,没用;2、大于等于k,小于等于2k,输出;3、大于2k,它的子矩阵中一定存在一个合法的矩阵(因为每个元素都是<k的,所以增加一个元素不可能直接使面积从小于k变成大于等于2k)。
考虑如何对一个大于等于2k的矩形找到它的合法的子矩阵。每次删掉一行或者一列一定可以找到。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#include<cstdlib>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; LL sum[N][N], k;
int a[N][N], U[N][N], L[N], R[N], n; void pd(int u,int d,int l,int r) {
if (u > d || l > r) return ;
LL now = sum[d][r] - sum[d][l - ] - sum[u - ][r] + sum[u - ][l - ];
if (now < k) return ;
if (now >= k && now <= k + k) {
printf("%d %d %d %d",l, u, r, d); exit();
}
if (d - u > r - l) {
pd(u + , d, l, r); pd(u, d - , l, r);
pd(u, d, l + , r); pd(u, d, l, r - );
}
else {
pd(u, d, l + , r); pd(u, d, l, r - );
pd(u + , d, l, r); pd(u, d - , l, r);
}
} int main() {
k = read(), n = read();
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j) {
a[i][j] = read();
sum[i][j] = a[i][j] + sum[i][j - ] + sum[i - ][j] - sum[i - ][j - ];
if (a[i][j] >= k && a[i][j] <= k + k) { printf("%d %d %d %d\n",j, i, j, i); return ; }
}
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
U[i][j] = a[i][j] <= k + k ? U[i - ][j] + : ;
for (int i = ; i <= n; ++i) L[i] = , R[i] = n + ;
for (int i = ; i <= n; ++i) {
int last = ;
for (int j = ; j <= n; ++j) {
if (a[i][j] <= k + k) L[j] = max(L[j], last + );
else last = j, L[j] = ;
}
last = n + ;
for (int j = n; j >= ; --j) {
if (a[i][j] <= k + k) R[j] = min(R[j], last - );
else last = j, R[j] = n + ;
}
for (int j = ; j <= n; ++j)
if (U[i][j] && L[j] >= && R[j] <= n) pd(i - U[i][j] + , i, L[j], R[j]);
}
puts("NIE");
return ;
}