记录sklearn数据训练时的loss值,用tensorboard可视化
三步骤:红字处
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer # load data
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y) # 转换格式
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3) def add_layer(inputs, in_size, out_size, layer_name, active_function=None):
"""
:param inputs:
:param in_size: 行
:param out_size: 列 , [行, 列] =矩阵
:param active_function:
:return:
"""
with tf.name_scope('layer'):
with tf.name_scope('weights'):
W = tf.Variable(tf.random_normal([in_size, out_size]), name='W') #
with tf.name_scope('bias'):
b = tf.Variable(tf.zeros([1, out_size]) + 0.1) # b是一行数据,对应out_size列个数据
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.matmul(inputs, W) + b
Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob=keep_prob)
if active_function is None:
outputs = Wx_plus_b
else:
outputs = active_function(Wx_plus_b)
tf.summary.histogram(layer_name + '/outputs', outputs) # 1.2.记录outputs值,数据直方图
return outputs # define placeholder for inputs to network
keep_prob = tf.placeholder(tf.float32) # 不被dropout的数量
xs = tf.placeholder(tf.float32, [None, 64]) # 8*8
ys = tf.placeholder(tf.float32, [None, 10]) # add output layer
l1 = add_layer(xs, 64, 50, 'l1', active_function=tf.nn.tanh)
prediction = add_layer(l1, 50, 10, 'l2', active_function=tf.nn.softmax) # the loss between prediction and really
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))
tf.summary.scalar('loss', cross_entropy) # 字符串类型的标量张量,包含一个Summaryprotobuf 1.1记录标量
# training
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session()
merged = tf.summary.merge_all() # 2.把所有summary节点整合在一起,只需run一次,这儿只有cross_entropy
sess.run(tf.initialize_all_variables()) train_writer = tf.summary.FileWriter('log/train', sess.graph) # 3.写入
test_writer = tf.summary.FileWriter('log/test', sess.graph) # start training
for i in range(500):
sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 0.5}) # keep_prob训练时保留50%,防止过拟合
if i % 50 == 0:
# record loss
train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1}) # 3.1 激活 tensorboard记录保留100%的数据
test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
train_writer.add_summary(train_result, i)
test_writer.add_summary(test_result, i) print("Record Finished !!!")