Description
给定一棵树,边的颜色为黑或白,初始时全部为白色。维护两个操作:
1.查询u到根路径上的第一条黑色边的标号。
2.将u到v 路径上的所有边的颜色设为黑色。
Notice:这棵树的根节点为1
Input
第一行两个数n,m分别表示点数和操作数。
接下来n-? 1行,每行2个数u,v.表示一条u到v的边。
接下来m行,每行为以下格式:
1 v 表示第一个操作
2 v u 表示第二种操作
Output
对于每个询问,输出相应答案。如果不存在,输出0。
由于边只会由白变黑,所以总的边修改次数为O(n),用并查集维护每个点到根的路径上最深的白边位置,预处理出边的染色顺序
逆序处理操作,用并查集维护,一开始把所有点合并到到根路径上第一条黑边,每取消一次染色就把边的下侧节点合并到上侧
#include<cstdio>
const int N=,R=;
char buf[R+],*ptr=buf-;
inline int _int(){
int x=,c=*++ptr;
while(c<)c=*++ptr;
while(c>)x=x*+c-,c=*++ptr;
return x;
}
int stk[],stp=;
inline void int_(int x){
if(!x)stk[++stp]=;
while(x)stk[++stp]=x%,x/=;
while(stp)putchar(stk[stp--]+);
putchar();
}
int n,m;
bool ed[N];
int f[N],q[N],ql,qr,dep[N],fa[N],id[N],aid[N];
int et[N*],enx[N*],e0[N],eid[N*],ep=;
int qs[N*],qw[N*],qp=,as[N],ap=;
inline int get(int x){
int a=x,c;
while(x!=f[x])x=f[x];
while(x!=(c=f[a]))f[a]=x,a=c;
return x;
}
int main(){
fread(buf,,R,stdin);
n=_int();m=_int();
for(int i=;i<=n;i++)f[i]=i;
for(int i=;i<n;i++){
int a=_int(),b=_int();
et[ep]=b;enx[ep]=e0[a];eid[ep]=i;e0[a]=ep++;
et[ep]=a;enx[ep]=e0[b];eid[ep]=i;e0[b]=ep++;
}
ql=qr=;
q[qr++]=;
dep[]=;
while(ql!=qr){
int w=q[ql++];
for(int i=e0[w];i;i=enx[i])if(int u=et[i]){
et[i^]=;
fa[u]=w;
id[u]=eid[i];
dep[q[qr++]=u]=dep[w]+;
}
}
for(int i=;i<m;i++)if(_int()==){
qs[qp]=;qw[qp++]=_int();
}else{
int a=get(_int()),b=get(_int());
while(a!=b){
if(dep[a]<dep[b]){int t=a;a=b;b=t;}
qw[qp++]=a;
aid[a]=id[a];
ed[a]=;
a=f[a]=get(fa[a]);
}
}
for(int i=;i<=n;i++)f[i]=i;
ql=qr=;
q[qr++]=;
while(ql!=qr){
int w=q[ql++];
for(int i=e0[w];i;i=enx[i])if(int u=et[i]){
if(ed[w]&&!ed[u])ed[u]=,f[get(u)]=get(w);
q[qr++]=u;
}
}
for(int i=qp-;~i;i--)
if(qs[i])as[ap++]=aid[get(qw[i])];
else f[get(qw[i])]=get(fa[qw[i]]);
while(ap)int_(as[--ap]);
return ;
}