链接:

https://www.nowcoder.com/acm/contest/139/A

题意:

求满足以下条件的n*m矩阵A的数量模(1e9+7):
A(i,j) ∈ {0,1,2}, 1≤i≤n, 1≤j≤m.
A(i,j) ≤ A(i+1,j), 1≤i<n, 1≤j≤m.
A(i,j) ≤ A(i,j+1), 1≤i≤n, 1≤j<m.
其中1 ≤ n,m ≤ 1e3。

分析:

考虑01和12的分界线,
是(n,0)到(0,m)的两条不相交(可重合)路径。
平移其中一条变成(n+1,1)到(1,m+1),
变成(n,0)到(0,m)、(n+1,1)到(1,m+1)的严格不相交路径。
套Lindström–Gessel–Viennot lemma,
答案是C(n+m,n) * C(n+m,n) - C(n+m,n+1) * C(n+m,n-1)。

Lindström–Gessel–Viennot lemma简介:

求a1到b1, a2到b2, ..., an到bn的严格不相交路径种数。

牛客网多校训练第一场 A - Monotonic Matrix(Lindstr&#246;m–Gessel–Viennot lemma)-LMLPHP

计算以上矩阵的行列式即可,其中e(a,b)是从a到b的方法数。

代码:

 #include <cstdio>

 typedef long long int LLI;
const int UP = * + ;
const LLI MOD = 1e9 + ;
LLI f[UP]; // 阶乘 LLI qmod(LLI x, LLI n, LLI mod) { // 快速幂模
x %= mod;
LLI res = ;
while(n) {
if(n & ) res = res * x % mod;
n >>= ;
x = x * x % mod;
}
return res;
} LLI inv(LLI a, LLI mod) { // 逆元
return qmod(a, mod-, mod);
} void constant() { // 预处理阶乘
f[] = ;
for(int i = ; i < UP; i++) f[i] = f[i-] * i % MOD;
} LLI C(int n, int m) { // 组合数,从n个里取m个
return f[n] * inv(f[m]*f[n-m], MOD) % MOD;
} int main() {
constant();
int n, m;
while(~scanf("%d%d", &n, &m)) {
LLI ans = (C(n+m,n) * C(n+m,n) - C(n+m,n+) * C(n+m,n-) % MOD + MOD) % MOD;
printf("%lld\n", ans);
}
return ;
}
05-11 11:19