题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度。

方法1,建图求解,可以把问题转化成求DAG上的最长路问题

 #include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
using namespace std;
const int maxn = ;
struct Node{
int x;
int y;
int z;
Node(int x,int y,int z):x(x),y(y),z(z){}
Node(){}
bool operator < (const Node &n)const{
return (x < n.x&& y < n.y) || (x < n.y&& y < n.x);
}
};
vector<Node> vec;
int n;
int d[maxn*];
int G[maxn*][maxn*];
int dp(int i,int h){
int & ans = d[i];
if(ans>)return ans;
ans = h;
for(int j = ; j < n*; j++)if(G[i][j]){
ans = max(ans,dp(j,vec[j].z)+h);
}
return ans;
}
int main(){
int cnt = ;
while(scanf("%d",&n)==&&n){
vec.clear();
memset(G,,sizeof(G));
memset(d,,sizeof(d));
for(int i = ; i< n; i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
vec.push_back(Node(x,y,z));
vec.push_back(Node(x,z,y));
vec.push_back(Node(z,y,x));
}
sort(vec.begin(),vec.end()); for(int i = ;i < n*; i++){
for(int j = ; j < n*; j++){
if(vec[i] < vec[j])
G[i][j] = ;
}
}
int result = -;
for(int i = ; i < n* ;i++){
result = max(result,dp(i,vec[i].z));
}
printf("Case %d: maximum height = %d\n",++cnt,result);
}
return ;
}

方法2,转化成最长递增子序列问题求解

 #include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
using namespace std;
const int maxn = ;
struct Node{
int x;
int y;
int z;
Node(int x,int y,int z):x(x),y(y),z(z){}
Node(){}
bool operator < (const Node &n)const{
return (x < n.x&& y < n.y) || (x < n.y&& y < n.x);
}
};
bool cmp(Node a,Node b){
return a.x*a.y < b.x*b.y;
}
vector<Node> vec;
int n;
int d[maxn*];
int LIS(int n){
//d[i] = max{hi,d[j]}i>j ,A[i]>A[j]
int t = ;
for(int i = ; i < n*; i++){
d[i] = vec[i].z;
for(int j = ; j < i; j++)
if(vec[j] < vec[i])
d[i] = max(d[i],d[j]+vec[i].z);
if(d[i] > t) t = d[i];
}
return t;
}
int main(){
int cnt = ;
while(scanf("%d",&n)==&&n){
vec.clear();
memset(d,,sizeof(d));
for(int i = ; i< n; i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
vec.push_back(Node(x,y,z));
vec.push_back(Node(x,z,y));
vec.push_back(Node(z,y,x));
}
sort(vec.begin(),vec.end(),cmp);
printf("Case %d: maximum height = %d\n",++cnt,LIS(n));
}
return ;
}

方法二要注意一点,我sort序列的时候用了一个cmp函数,他是根据立方体的底面积对立方体进行排序的。为什么不采用和方法一一样的排序方式呢?

因为a.x <b.x&&a.y<b.y

或 a.y<b.x&&a.x<b.y

=>Sa <Sb

所以在塔上面的立方体的底面积一定比下面的小。

05-11 11:18