第一行为源点个数,边的个数m

接下来m行为a->b和权值

5 5
2 3 2
1 2 -3
1 5 5
4 5 2
3 4 3

Bellman-Ford算法(1):

 #include<iostream>
#include<cstdio>
#include<algorithm>
#define inf 1000000000
using namespace std;
int main()
{
int dis[], u[], v[], w[];
int n, m;
cin >> n >> m;
for (int i = ; i <= m; i++)
cin >> u[i] >> v[i] >> w[i];
for (int i = ; i <= n; i++)
dis[i] = inf;
dis[] = ;
for (int k = ; k < n; k++)
for (int i = ; i <= m; i++)
dis[v[i]] = min(dis[v[i]], dis[u[i]] + w[i]);
for (int i = ; i <= n; i++)
cout << dis[i] << " ";
return ;
}

(2)

 #include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
#define inf 1000000000
struct edge
{
int from, to, cost;
};
edge es[];
int d[], V, E;
void path(int s)
{
for (int i = ; i <= V; i++) d[i] = inf;
d[s] = ;
while (true)
{
bool update = false;
for (int i = ; i < E; i++)
{
edge e = es[i];
if (d[e.from] != inf&& d[e.to]>d[e.from] + e.cost)
{
d[e.to] = d[e.from] + e.cost;
update = true;
}
}
if (!update) break;
}
for (int i = ; i <= V; i++)
cout << d[i] << " ";
}
int main()
{
cin >> V >> E;
for (int i = ; i < E; i++)
{
cin >> es[i].from >> es[i].to >> es[i].cost;
}
path();
return ;
}
05-11 15:47