暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化。
秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\(n\)次多项式的算法转化为求\(n\)个一次多项式的算法。
但是这样只能得到30分,用高精也只能拿50分,所以此时可以用模数意义下的\(hash\)来解决,设置模数为1e9+7(或者其他比较大的模数),就可以来优化时间,虽然有很可能会错,但是还是可以用很快的时间来解决,且错的几率是非常的小的。
#include <bits/stdc++.h>
#define N 100100
#define mod 1000000007
#define ll long long
using namespace std;
ll n, m, ans, a[N], x[N];
bool flag = 0;
inline ll read()
{
char ch; ll sum = 0, fu = 1; ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') fu = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
sum = ( (sum * 10) + ch - '0') % mod;
ch = getchar();
}
return sum * fu;
}
bool check(ll now) {
ll sum = 0;
for (int i = n; i >= 0; i--)
sum = ( (sum + a[i]) * now ) % mod;
if (sum) return 0;
else return 1;
}
int main()
{
scanf("%lld%lld", &n, &m);
for (int i = 0; i <= n; i++)
a[i] = read();
/*
for (int i = 0; i <= n; i++)
printf("%lld ", a[i]);
*/
for (int i = 1; i <= m; i++)
if ( check (i) )
x[++ans] = i, flag = 1;
if (!flag)
printf("0"), exit(0);
printf("%lld\n", ans);
for (int i = 1; i <= ans; i++)
printf("%lld\n", x[i]);
}